論文の概要: Variational Inference on the Boolean Hypercube with the Quantum Entropy
- arxiv url: http://arxiv.org/abs/2411.03759v1
- Date: Wed, 06 Nov 2024 08:42:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:24:01.405612
- Title: Variational Inference on the Boolean Hypercube with the Quantum Entropy
- Title(参考訳): 量子エントロピーを持つブールハイパーキューブの変分推論
- Authors: Eliot Beyler, Francis Bach,
- Abstract要約: ブールハイパーキューブ上の対数マルコフ確率場の対数分割関数上界の変分推論を導出する。
そこで本研究では,これらの境界を原始双対最適化に基づいて効率的に計算するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, we derive variational inference upper-bounds on the log-partition function of pairwise Markov random fields on the Boolean hypercube, based on quantum relaxations of the Kullback-Leibler divergence. We then propose an efficient algorithm to compute these bounds based on primal-dual optimization. An improvement of these bounds through the use of ''hierarchies,'' similar to sum-of-squares (SoS) hierarchies is proposed, and we present a greedy algorithm to select among these relaxations. We carry extensive numerical experiments and compare with state-of-the-art methods for this inference problem.
- Abstract(参考訳): 本論文では,Kulback-Leibler分散の量子緩和に基づくブールハイパーキューブ上のペアワイズマルコフ確率場の対数分割関数上界の変分推論を導出する。
そこで本研究では,これらの境界を原始双対最適化に基づいて効率的に計算するアルゴリズムを提案する。
そこで本研究では,2乗法(SoS)階層に類似した「階層」を用いることにより,これらの境界を改良し,これらの緩和の中から選択するための欲求的アルゴリズムを提案する。
我々は、この推論問題に対して、広範な数値実験を行い、最先端の手法と比較する。
関連論文リスト
- The role of gaps in digitized counterdiabatic QAOA for fully-connected spin models [0.0]
量子近似最適化アルゴリズム(QAOA)に対するCD補正が提案され、標準QAOAよりも所望の精度で収束する。
本研究では,解析したインスタンスのスペクトル特性にアルゴリズムの性能が関係していることを示す。
論文 参考訳(メタデータ) (2024-09-05T13:17:56Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Connection between single-layer Quantum Approximate Optimization
Algorithm interferometry and thermal distributions sampling [0.0]
固有状態の振幅と単層QAOAによって生成されるボルツマン分布の理論的導出を拡張する。
我々はまた、この行動が実践的および基本的視点の両方から持つ意味についてもレビューする。
論文 参考訳(メタデータ) (2023-10-13T15:06:58Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
本稿では,一階変分法の理論解析のための統一的アプローチを提案する。
提案手法は非線形勾配問題とモンテカルロの強い問題の両方をカバーする。
凸法最適化問題の場合、オラクルに強く一致するような境界を与える。
論文 参考訳(メタデータ) (2023-05-25T11:11:31Z) - Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems [2.707154152696381]
本稿では、Fokker-Planck方程式(FPE)を用いて非線形微分方程式(SDE)を解くための効率的な量子アルゴリズムを提案する。
空間と時間におけるFPEを2つのよく知られた数値スキーム、すなわち Chang-Cooper と暗黙の有限差分を用いて識別する。
次に、量子線型系を用いて線形方程式の結果の解を計算する。
論文 参考訳(メタデータ) (2023-03-04T17:40:23Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
一般化された複合ミラー降下アルゴリズムの一群を提案し,解析する。
適応的なステップサイズでは、提案アルゴリズムは問題の事前知識を必要とせずに収束する。
決定集合の低次元構造を高次元問題に活用する。
論文 参考訳(メタデータ) (2022-11-21T18:31:43Z) - First-Order Algorithms for Nonlinear Generalized Nash Equilibrium
Problems [88.58409977434269]
非線形一般化ナッシュ均衡問題(NGNEP)における平衡計算の問題を考える。
我々の貢献は、2次ペナルティ法と拡張ラグランジアン法に基づく2つの単純な一階アルゴリズムフレームワークを提供することである。
これらのアルゴリズムに対する漸近的理論的保証を提供する。
論文 参考訳(メタデータ) (2022-04-07T00:11:05Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - The Last-Iterate Convergence Rate of Optimistic Mirror Descent in
Stochastic Variational Inequalities [29.0058976973771]
本稿では,アルゴリズムの収束率とBregman関数によって誘導される局所幾何学との複雑な関係を示す。
この指数はアルゴリズムの最適ステップサイズポリシーと得られた最適レートの両方を決定する。
論文 参考訳(メタデータ) (2021-07-05T09:54:47Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。