論文の概要: Both Text and Images Leaked! A Systematic Analysis of Data Contamination in Multimodal LLM
- arxiv url: http://arxiv.org/abs/2411.03823v3
- Date: Sat, 20 Sep 2025 19:01:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 14:36:44.559151
- Title: Both Text and Images Leaked! A Systematic Analysis of Data Contamination in Multimodal LLM
- Title(参考訳): テキストと画像が漏洩した!マルチモーダルLCMにおけるデータ汚染の系統解析
- Authors: Dingjie Song, Sicheng Lai, Mingxuan Wang, Shunian Chen, Lichao Sun, Benyou Wang,
- Abstract要約: マルチモーダルな大言語モデル (MLLM) はベンチマーク間で大幅に性能が向上した。
マルチモーダルデータ複雑性とマルチフェーズトレーニングのため,既存のLLM検出手法はMLLMでは不十分である。
我々は分析フレームワークMM-Detectを用いてマルチモーダルデータの汚染を分析する。
- 参考スコア(独自算出の注目度): 53.05486269607166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of multimodal large language models (MLLMs) has significantly enhanced performance across benchmarks. However, data contamination-unintentional memorization of benchmark data during model training-poses critical challenges for fair evaluation. Existing detection methods for unimodal large language models (LLMs) are inadequate for MLLMs due to multimodal data complexity and multi-phase training. We systematically analyze multimodal data contamination using our analytical framework, MM-Detect, which defines two contamination categories-unimodal and cross-modal-and effectively quantifies contamination severity across multiple-choice and caption-based Visual Question Answering tasks. Evaluations on twelve MLLMs and five benchmarks reveal significant contamination, particularly in proprietary models and older benchmarks. Crucially, contamination sometimes originates during unimodal pre-training rather than solely from multimodal fine-tuning. Our insights refine contamination understanding, guiding evaluation practices and improving multimodal model reliability.
- Abstract(参考訳): MLLM(Multimodal large language model)の急速な進歩により、ベンチマーク全体の性能が大幅に向上した。
しかし, モデルトレーニング中のデータ汚染・意図しないベンチマークデータの暗記は, 公正な評価に重要な課題となる。
マルチモーダルデータ複雑性とマルチフェーズトレーニングのため,既存のLLM検出手法はMLLMでは不十分である。
分析フレームワークMM-Detectを用いてマルチモーダルデータの汚染を系統的に解析し,複数選択およびキャプションに基づく視覚質問応答タスクにおける汚染の重大度を効果的に定量化する。
12のMLLMと5のベンチマークに対する評価は、特にプロプライエタリなモデルや古いベンチマークにおいて顕著な汚染を示す。
重要なこととして、汚染はマルチモーダル微調整のみからではなく、単調な事前訓練中に生じることがある。
我々は,汚染の理解,評価の指導,マルチモーダルモデルの信頼性の向上について考察した。
関連論文リスト
- Advancing Multimodal Reasoning Capabilities of Multimodal Large Language Models via Visual Perception Reward [87.06604760273372]
本稿では,MLLMに視覚内容の正確な知覚を促す新しい視覚認識報酬を導入するPerception-R1を提案する。
本稿では,Perception-R1が1,442のトレーニングデータのみを用いて,ほとんどのベンチマークで最先端のパフォーマンスを実現することを示す。
論文 参考訳(メタデータ) (2025-06-08T16:48:42Z) - Exploring and Evaluating Multimodal Knowledge Reasoning Consistency of Multimodal Large Language Models [52.569132872560814]
マルチモーダルな大言語モデル(MLLM)は、テキストとビジョンの理解を深め、大きなブレークスルーを達成した。
しかし、現在のMLLMは、マルチモーダルな知識推論において、これらのモダリティを効果的に統合する上での課題に直面している。
MLLMにおけるマルチモーダル知識推論における一貫性劣化の程度を解析・比較する。
論文 参考訳(メタデータ) (2025-03-03T09:01:51Z) - Are Large Language Models Good Data Preprocessors? [5.954202581988127]
高品質なテキストトレーニングデータは、マルチモーダルデータ処理タスクの成功に不可欠である。
BLIPやGITのような画像キャプションモデルからの出力は、しばしばルールベースの手法で修正が難しいエラーや異常を含む。
論文 参考訳(メタデータ) (2025-02-24T02:57:21Z) - Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
大規模言語モデル (LLM) は時系列解析に広く応用されている。
しかし、数発の分類(すなわち重要な訓練シナリオ)におけるそれらの実用性は過小評価されている。
データ不足を克服するために,LLMの学習済み知識を幅広く活用することを目的としている。
論文 参考訳(メタデータ) (2025-01-30T03:59:59Z) - Exploring Large Language Models for Multimodal Sentiment Analysis: Challenges, Benchmarks, and Future Directions [0.0]
マルチモーダル・アスペクトベース感性分析(MABSA)は、テキストや画像を含む多モーダル情報からアスペクト項とその対応する感情極性を抽出することを目的としている。
従来の教師付き学習手法はこの課題において有効性を示したが、大規模言語モデル(LLM)のMABSAへの適応性は未だ不明である。
Llama2、LLaVA、ChatGPTなどのLLMの最近の進歩は、一般的なタスクにおいて強力な能力を示しているが、MABSAのような複雑できめ細かなシナリオでは、その性能が過小評価されている。
論文 参考訳(メタデータ) (2024-11-23T02:17:10Z) - FedMLLM: Federated Fine-tuning MLLM on Multimodal Heterogeneity Data [64.50893177169996]
フェデレートラーニング(FL)による微調整型マルチモーダル大言語モデル(MLLM)は、プライベートデータソースを含めることで、トレーニングデータの範囲を拡大することができる。
マルチモーダルなヘテロジニアスシナリオにおけるMLLMのファインチューニングにおける様々なダウンストリームタスクを評価するためのベンチマークを提案する。
我々は,2つのモダリティに依存しない戦略とともに,4つの代表的FL手法を統合する汎用FedMLLMフレームワークを開発した。
論文 参考訳(メタデータ) (2024-11-22T04:09:23Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
本稿では,l-MLLMからs-MLLMへ知識を伝達する新しいフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるために,MDist(Multimodal Distillation)を導入する。
また,S-MLLMの可能性を完全に活用するための3段階学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T17:41:28Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
本稿では,MLLM評価におけるLarge Language Model (LLM)バックボーンの役割について検討する。
本研究は4つのMLLMベンチマークと8つの最先端MLLMベンチマークを含む。
鍵となる発見は、いくつかのベンチマークでは視覚的な入力がなくても高いパフォーマンスを実現しており、最大50%のエラーレートは、LLMバックボーンにおける不十分な世界的知識に起因していることを示している。
論文 参考訳(メタデータ) (2024-10-16T07:49:13Z) - Towards Data Contamination Detection for Modern Large Language Models: Limitations, Inconsistencies, and Oracle Challenges [3.0455427910850785]
我々は,8つの挑戦的データセットにまたがる4つの最先端LCMを用いた5つの汚染検出手法を評価する。
解析の結果,現在の手法は仮定や応用に非自明な制約があることが明らかとなった。
論文 参考訳(メタデータ) (2024-09-16T02:04:33Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective [53.48484062444108]
モデルとデータの開発は2つの別々のパスではなく、むしろ相互接続であることがわかった。
一方,MLLMはデータ開発に役立てることができるため,MLLMの性能向上に寄与する。
MLLMコミュニティにおけるデータモデル共同開発を促進するために,データモデル共同開発の観点からMLLMに関連する既存の研究を体系的にレビューする。
論文 参考訳(メタデータ) (2024-07-11T15:08:11Z) - A Comprehensive Survey of Contamination Detection Methods in Large Language Models [68.10605098856087]
近年のLarge Language Models(LLM)の台頭に伴い、多くの新しい機会が生まれつつありますが、新たな課題もあります。
LLMの性能は、データへの以前の露出のために、少なくとも部分的には高性能である可能性があるため、もはや信頼性が低い可能性がある。
この制限は、NLPの分野での実際の能力向上を阻害するが、汚染を効率的に検出する方法が不足している。
論文 参考訳(メタデータ) (2024-03-31T14:32:02Z) - GenCeption: Evaluate Multimodal LLMs with Unlabeled Unimodal Data [3.08543976986593]
MLLM(Multimodal Large Language Models)は通常、高価な注釈付きマルチモーダルベンチマークを用いて評価される。
本稿では,新しいアノテーションのない評価手法であるGenCeptionの概要と検証を行う。
モダリティ間のセマンティック・コヒーレンスを測定するために一元データのみを必要とし、逆にMLLMの幻覚傾向を評価する。
論文 参考訳(メタデータ) (2024-02-22T21:22:04Z) - OPDAI at SemEval-2024 Task 6: Small LLMs can Accelerate Hallucination
Detection with Weakly Supervised Data [1.3981625092173873]
本稿では,LLMの幻覚検出システムについて述べる。
SemEval-2024 Task 6のモデル非依存トラックで2位を獲得した。
論文 参考訳(メタデータ) (2024-02-20T11:01:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。