論文の概要: Improve the Fitting Accuracy of Deep Learning for the Nonlinear Schrödinger Equation Using Linear Feature Decoupling Method
- arxiv url: http://arxiv.org/abs/2411.04511v1
- Date: Thu, 07 Nov 2024 08:08:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:37:15.160700
- Title: Improve the Fitting Accuracy of Deep Learning for the Nonlinear Schrödinger Equation Using Linear Feature Decoupling Method
- Title(参考訳): 線形特徴分離法による非線形シュレーディンガー方程式の深層学習精度の向上
- Authors: Yunfan Zhang, Zekun Niu, Minghui Shi, Weisheng Hu, Lilin Yi,
- Abstract要約: 我々は、FDD(Feature Decoupling Distributed)法を用いて、深層学習能力を高めて、シュロディンガー方程式(NLSE)に適合させる。
非結合モデルと比較してNLSE損失は著しく減少する。
- 参考スコア(独自算出の注目度): 1.0524575767783517
- License:
- Abstract: We utilize the Feature Decoupling Distributed (FDD) method to enhance the capability of deep learning to fit the Nonlinear Schrodinger Equation (NLSE), significantly reducing the NLSE loss compared to non decoupling model.
- Abstract(参考訳): 本研究では、FDD法を用いて、非線形シュロディンガー方程式(NLSE)に適合する深層学習の能力を向上し、非疎結合モデルと比較してNLSE損失を著しく低減する。
関連論文リスト
- LEARN: An Invex Loss for Outlier Oblivious Robust Online Optimization [56.67706781191521]
敵は、学習者に未知の任意の数kの損失関数を破損させることで、外れ値を導入することができる。
我々は,任意の数kで損失関数を破損させることで,敵が外乱を発生させることができる,頑健なオンラインラウンド最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-12T17:08:31Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - RAR-PINN algorithm for the data-driven vector-soliton solutions and
parameter discovery of coupled nonlinear equations [6.340205794719235]
本研究の目的は、結合された非線形方程式とその相互作用のベクトル-ソリトン解を予測する効果的なディープラーニングフレームワークを提供することである。
本稿では,残差ベース適応改良(RAR-PINN)アルゴリズムと組み合わせた物理インフォームドニューラルネットワーク(PINN)を提案する。
論文 参考訳(メタデータ) (2022-04-29T12:34:33Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z) - A deep branching solver for fully nonlinear partial differential
equations [0.1474723404975345]
完全非線形PDEの数値解に対する分岐アルゴリズムの多次元深層学習実装を提案する。
このアプローチは、任意の順序の勾配項を含む機能的非線形性に取り組むように設計されている。
論文 参考訳(メタデータ) (2022-03-07T09:46:46Z) - Non-linear manifold ROM with Convolutional Autoencoders and Reduced
Over-Collocation method [0.0]
非アフィンパラメトリックな依存、非線形性、興味のモデルにおける対流支配的な規則は、ゆっくりとしたコルモゴロフ n-幅の崩壊をもたらす。
我々は,Carlbergらによって導入された非線形多様体法を,オーバーコロケーションの削減とデコーダの教師/学生による学習により実現した。
本研究では,2次元非線形保存法と2次元浅水モデルを用いて方法論を検証し,時間とともに動的に進化する純粋データ駆動型手法と長期記憶ネットワークとの比較を行った。
論文 参考訳(メタデータ) (2022-03-01T11:16:50Z) - Inverse Problem of Nonlinear Schr\"odinger Equation as Learning of
Convolutional Neural Network [5.676923179244324]
提案手法を用いて,パラメータの相対的精度を推定できることを示す。
深い学習を伴う偏微分方程式の逆問題における自然な枠組みを提供する。
論文 参考訳(メタデータ) (2021-07-19T02:54:37Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
本稿では,非線形微調整に匹敵する性能を実現する事前学習モデルの線形化手法を提案する。
LQFはアーキテクチャの単純な変更、損失関数、そして一般的に分類に使用される最適化で構成されている。
論文 参考訳(メタデータ) (2020-12-21T06:40:20Z) - Learning Fast Approximations of Sparse Nonlinear Regression [50.00693981886832]
本研究では,Threshold Learned Iterative Shrinkage Algorithming (NLISTA)を導入することでギャップを埋める。
合成データを用いた実験は理論結果と相関し,その手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-26T11:31:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。