論文の概要: A deep branching solver for fully nonlinear partial differential
equations
- arxiv url: http://arxiv.org/abs/2203.03234v2
- Date: Sat, 9 Sep 2023 02:12:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 23:42:49.482818
- Title: A deep branching solver for fully nonlinear partial differential
equations
- Title(参考訳): 完全非線形偏微分方程式に対する深い分岐解法
- Authors: Jiang Yu Nguwi, Guillaume Penent, and Nicolas Privault
- Abstract要約: 完全非線形PDEの数値解に対する分岐アルゴリズムの多次元深層学習実装を提案する。
このアプローチは、任意の順序の勾配項を含む機能的非線形性に取り組むように設計されている。
- 参考スコア(独自算出の注目度): 0.1474723404975345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a multidimensional deep learning implementation of a stochastic
branching algorithm for the numerical solution of fully nonlinear PDEs. This
approach is designed to tackle functional nonlinearities involving gradient
terms of any orders, by combining the use of neural networks with a Monte Carlo
branching algorithm. In comparison with other deep learning PDE solvers, it
also allows us to check the consistency of the learned neural network function.
Numerical experiments presented show that this algorithm can outperform deep
learning approaches based on backward stochastic differential equations or the
Galerkin method, and provide solution estimates that are not obtained by those
methods in fully nonlinear examples.
- Abstract(参考訳): 完全非線形PDEの数値解に対する確率分岐アルゴリズムの多次元ディープラーニング実装を提案する。
このアプローチは、ニューラルネットワークとモンテカルロ分岐アルゴリズムを組み合わせることにより、任意の順序の勾配項を含む機能的非線形性に取り組むように設計されている。
他のディープラーニングPDEソルバと比較して、学習したニューラルネットワーク機能の一貫性を確認することもできる。
数値実験により, このアルゴリズムは, 後方確率微分方程式やガレルキン法に基づくディープラーニング手法よりも優れており, 完全非線形例では得られない解推定値を提供する。
関連論文リスト
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations [0.6040014326756179]
我々は、高次元非線形後方微分方程式(BSDEs)を解くための新しい前方微分深層学習アルゴリズムを提案する。
差分深度学習がラベルとその導関数を入力に対して効率的に近似できるという事実により、BSDE問題を差分深度学習問題に変換する。
アルゴリズムの主な考え方は、オイラー・丸山法を用いて積分を離散化し、3つのディープニューラルネットワークを用いて未知の離散解を近似することである。
論文 参考訳(メタデータ) (2024-08-10T19:34:03Z) - A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations [0.6040014326756179]
本稿では,高次元非線形逆微分方程式を解くための新しい逆微分深層学習アルゴリズムを提案する。
ディープニューラルネットワーク(DNN)モデルは、入力やラベルだけでなく、対応するラベルの差分に基づいて訓練される。
論文 参考訳(メタデータ) (2024-04-12T13:05:35Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Deep learning numerical methods for high-dimensional fully nonlinear
PIDEs and coupled FBSDEs with jumps [26.28912742740653]
高次元放物型積分微分方程式(PIDE)を解くためのディープラーニングアルゴリズムを提案する。
ジャンプ拡散過程はブラウン運動と独立補償ポアソンランダム測度によって導出される。
この深層学習アルゴリズムの誤差推定を導出するために,マルコビアンの収束,オイラー時間離散化の誤差境界,および深層学習アルゴリズムのシミュレーション誤差について検討した。
論文 参考訳(メタデータ) (2023-01-30T13:55:42Z) - Inverse Problem of Nonlinear Schr\"odinger Equation as Learning of
Convolutional Neural Network [5.676923179244324]
提案手法を用いて,パラメータの相対的精度を推定できることを示す。
深い学習を伴う偏微分方程式の逆問題における自然な枠組みを提供する。
論文 参考訳(メタデータ) (2021-07-19T02:54:37Z) - Learning Fast Approximations of Sparse Nonlinear Regression [50.00693981886832]
本研究では,Threshold Learned Iterative Shrinkage Algorithming (NLISTA)を導入することでギャップを埋める。
合成データを用いた実験は理論結果と相関し,その手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-26T11:31:08Z) - Deep neural network for solving differential equations motivated by
Legendre-Galerkin approximation [16.64525769134209]
線形微分方程式と非線形微分方程式の両方における様々なニューラルネットワークアーキテクチャの性能と精度について検討する。
我々は、微分方程式の解を予測するために、新しいレジェンダ-ガレルキンディープニューラルネットワーク(LGNet)アルゴリズムを実装した。
論文 参考訳(メタデータ) (2020-10-24T20:25:09Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。