Exploring How Generative MLLMs Perceive More Than CLIP with the Same Vision Encoder
- URL: http://arxiv.org/abs/2411.05195v2
- Date: Thu, 20 Feb 2025 07:22:53 GMT
- Title: Exploring How Generative MLLMs Perceive More Than CLIP with the Same Vision Encoder
- Authors: Siting Li, Pang Wei Koh, Simon Shaolei Du,
- Abstract summary: We show that Generative Multimodal Large Language Models (MLLMs) achieve significantly higher accuracy than CLIP.
Our study highlights the importance of VLM architectural choices and suggests directions for improving the performance of CLIP-like contrastive VLMs.
- Score: 18.91969873367244
- License:
- Abstract: Recent research has shown that CLIP models struggle with visual reasoning tasks that require grounding compositionality, understanding spatial relationships, or capturing fine-grained details. One natural hypothesis is that the CLIP vision encoder does not embed essential information for these tasks. However, we find that this is not always the case: The encoder gathers query-relevant visual information, while CLIP fails to extract it. In particular, we show that another branch of Vision-Language Models (VLMs), Generative Multimodal Large Language Models (MLLMs), achieve significantly higher accuracy than CLIP in many of these tasks using the same vision encoder and weights, indicating that these Generative MLLMs perceive more -- as they extract and utilize visual information more effectively. We conduct a series of controlled experiments and reveal that their success is attributed to multiple key design choices, including patch tokens, position embeddings, and prompt-based weighting. On the other hand, enhancing the training data alone or applying a stronger text encoder does not suffice to solve the task, and additional text tokens offer little benefit. Interestingly, we find that fine-grained visual reasoning is not exclusive to generative models trained by an autoregressive loss: When converted into CLIP-like encoders by contrastive finetuning, these MLLMs still outperform CLIP under the same cosine similarity-based evaluation protocol. Our study highlights the importance of VLM architectural choices and suggests directions for improving the performance of CLIP-like contrastive VLMs.
Related papers
- Seeing Syntax: Uncovering Syntactic Learning Limitations in Vision-Language Models [18.87130615326443]
Vision-language models (VLMs) serve as foundation models for image captioning and text-to-image generation.
Recent studies have highlighted limitations in VLM text encoders, particularly in areas like compositionality and semantic understanding.
arXiv Detail & Related papers (2024-12-11T05:37:04Z) - [CLS] Token Tells Everything Needed for Training-free Efficient MLLMs [66.5266435598799]
Multi-language Large Language Models (MLLMs) have recently demonstrated strong performance across a wide range of vision tasks.
However, their efficient deployment remains a substantial challenge due to high computational costs and memory requirements.
We introduce a simple yet effective method for train-free visual compression, called VTC- compression.
arXiv Detail & Related papers (2024-12-08T05:29:39Z) - Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders [89.38717274524681]
This study explores the design space for multimodal large language models (MLLMs) using a mixture of vision encoders and resolutions.
Our findings reveal several underlying principles common to various existing strategies, leading to a streamlined yet effective design approach.
The resulting family of MLLMs, Eagle, surpasses other leading open-source models on major MLLM benchmarks.
arXiv Detail & Related papers (2024-08-28T17:59:31Z) - Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities [30.176918208200604]
Vision-Language Models (VLMs) have emerged as general purpose tools for addressing a variety of complex computer vision problems.
These models have been shown to be highly capable, but also lacking some basic visual understanding skills.
This paper sets out to understand the limitations of SoTA VLMs on fundamental visual tasks.
arXiv Detail & Related papers (2024-08-13T08:26:32Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.
Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.
We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - MouSi: Poly-Visual-Expert Vision-Language Models [132.58949014605477]
This paper proposes the use of ensemble experts technique to synergize the capabilities of individual visual encoders.
This technique introduces a fusion network to unify the processing of outputs from different visual experts.
In our implementation, this technique significantly reduces the positional occupancy in models like SAM, from a substantial 4096 to a more efficient and manageable 64 or even down to 1.
arXiv Detail & Related papers (2024-01-30T18:09:11Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
This paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism.
We introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline.
arXiv Detail & Related papers (2024-01-06T02:02:34Z) - VCoder: Versatile Vision Encoders for Multimodal Large Language Models [46.95488342139727]
Multimodal Large Language Models (MLLM) have recently achieved impressive performance on vision-language tasks.
However, when prompted to identify or count (perceive) the entities in a given image, existing MLLM systems fail.
We propose using Versatile vision enCoders (VCoder) as perception eyes for Multimodal LLMs.
arXiv Detail & Related papers (2023-12-21T18:49:47Z) - From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language
Models [36.41816380074965]
We investigate the effectiveness of different vision encoders within Large Language Models (MLLMs)
Our findings reveal that the shallow layer features of CLIP offer particular advantages for fine-grained tasks such as grounding and region understanding.
We propose a simple yet effective feature merging strategy, named COMM, that integrates CLIP and DINO with Multi-level features Merging.
arXiv Detail & Related papers (2023-10-13T02:41:55Z) - How Much Can CLIP Benefit Vision-and-Language Tasks? [121.46042421728016]
We show that CLIP (Contrastive Language-Image Pre-training), trained on a massive amount of image-caption pairs, has shown a strong zero-shot capability on various vision tasks.
We achieve competitive or better results on diverse V&L tasks, while establishing new state-of-the-art results on Visual Question Answering, Visual Entailment, and V&L Navigation tasks.
arXiv Detail & Related papers (2021-07-13T20:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.