論文の概要: scMEDAL for the interpretable analysis of single-cell transcriptomics data with batch effect visualization using a deep mixed effects autoencoder
- arxiv url: http://arxiv.org/abs/2411.06635v3
- Date: Thu, 13 Mar 2025 16:15:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:49:04.026198
- Title: scMEDAL for the interpretable analysis of single-cell transcriptomics data with batch effect visualization using a deep mixed effects autoencoder
- Title(参考訳): ディープ・ミックス・エフェクト・オートエンコーダを用いたバッチ効果可視化による単細胞転写データの解釈解析のための scMEDAL
- Authors: Aixa X. Andrade, Son Nguyen, Albert Montillo,
- Abstract要約: scMEDALはシングルセルミックスエフェクトディープオートエンコーダ学習のためのフレームワークである。
scMEDALはバッチ固有のバリエーションをモデル化しながら、バッチ効果を抑制する。
病気の状態、ドナー群、細胞型のより正確な予測を可能にする。
- 参考スコア(独自算出の注目度): 6.596656267996196
- License:
- Abstract: scRNA-seq data has the potential to provide new insights into cellular heterogeneity and data acquisition; however, a major challenge is unraveling confounding from technical and biological batch effects. Existing batch correction algorithms suppress and discard these effects, rather than quantifying and modeling them. Here, we present scMEDAL, a framework for single-cell Mixed Effects Deep Autoencoder Learning, which separately models batch-invariant and batch-specific effects using two complementary autoencoder networks. One network is trained through adversarial learning to capture a batch-invariant representation, while a Bayesian autoencoder learns a batch-specific representation. Comprehensive evaluations spanning conditions (e.g., autism, leukemia, and cardiovascular), cell types, and technical and biological effects demonstrate that scMEDAL suppresses batch effects while modeling batch-specific variation, enhancing accuracy and interpretability. Unlike prior approaches, the framework's fixed- and random-effects autoencoders enable retrospective analyses, including predicting a cell's expression as if it had been acquired in a different batch via genomap projections at the cellular level, revealing the impact of biological (e.g., diagnosis) and technical (e.g., acquisition) effects. By combining scMEDAL's batch-agnostic and batch-specific latent spaces, it enables more accurate predictions of disease status, donor group, and cell type, making scMEDAL a valuable framework for gaining deeper insight into data acquisition and cellular heterogeneity.
- Abstract(参考訳): scRNA-seqデータには、細胞不均一性とデータ取得に関する新たな洞察を提供する可能性があるが、技術的および生物学的バッチ効果との相違が大きな課題である。
既存のバッチ補正アルゴリズムは、これらの効果を定量化し、モデル化するのではなく、抑制し、破棄する。
本稿では,2つの相補的オートエンコーダネットワークを用いて,バッチ不変およびバッチ固有エフェクトを別々にモデル化した,シングルセル混合効果深層オートエンコーダ学習のためのフレームワークである scMEDAL を提案する。
あるネットワークは逆学習によりバッチ不変表現をキャプチャし、ベイズオートエンコーダはバッチ固有表現を学習する。
包括的評価(例えば、自閉症、白血病、心血管)、細胞タイプ、および技術的および生物学的効果は、scMEDALがバッチ固有の変動をモデル化しながらバッチ効果を抑制し、精度と解釈可能性を高めることを示す。
従来のアプローチとは異なり、このフレームワークの固定効果とランダム効果のオートエンコーダは、細胞の発現を細胞レベルでジェノマププロジェクションを介して異なるバッチで取得したかのように予測し、生物学的(例:診断)と技術的な(例:取得)効果の影響を明らかにすることを含む、振り返り分析を可能にする。
scMEDALのバッチ非依存空間とバッチ固有の潜伏空間を組み合わせることで、病気の状態、ドナーグループ、細胞タイプのより正確な予測が可能になる。
関連論文リスト
- Predicting Drug Effects from High-Dimensional, Asymmetric Drug Datasets by Using Graph Neural Networks: A Comprehensive Analysis of Multitarget Drug Effect Prediction [1.1970409518725493]
グラフニューラルネットワーク(GNN)は、薬物分子グラフから薬物効果を予測する最も効果的なML手法の1つである。
膨大な可能性を秘めているにもかかわらず、GNNモデルは高次元、非対称的に共起する薬物効果を含むデータセットを使用する際の性能を欠いている。
そこで本稿では, 与えられた不均衡な分子グラフデータセットの多重ラベル分類性能を改善するために, 新たなデータオーバーサンプリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T22:09:29Z) - Interpretable cancer cell detection with phonon microscopy using multi-task conditional neural networks for inter-batch calibration [39.759100498329275]
本稿では,バッチ間キャリブレーションを同時に実現する条件付きニューラルネットワークフレームワークを提案する。
異なる実験バッチをトレーニングし、検証することで、我々のアプローチを検証する。
このモデルを拡張して, 診断信号の再構成を行い, 疾患状態を示す有能な特徴の物理的解釈を可能にした。
論文 参考訳(メタデータ) (2024-03-26T12:20:10Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
医療画像データセットは、コンピュータ支援診断、治療計画、医学研究に使用される訓練モデルに不可欠である。
データ分散のばらつき、データの不足、ジェネリックイメージから事前トレーニングされたモデルを使用する場合の転送学習の問題などである。
本稿では,データ不足と分散不均衡の影響を軽減するために,一連の手法を統合したシームズニューラルネットワークに基づく手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T16:59:27Z) - Removing Biases from Molecular Representations via Information
Maximization [16.38589836748167]
InfoCOREは、COnfounder Removalがバッチ効果を扱うための情報アプローチである。
インプリートされたバッチ分布を等化するために、サンプルを適応的にリウィージする。
汎用的なフレームワークを提供し、データ公平性の一般的な分散シフトと課題を解決する。
論文 参考訳(メタデータ) (2023-12-01T16:53:15Z) - STEM Rebalance: A Novel Approach for Tackling Imbalanced Datasets using
SMOTE, Edited Nearest Neighbour, and Mixup [0.20482269513546458]
医用画像における非バランスなデータセットは、スクイードクラスの割合と異常な症例の不足によって特徴づけられる。
本稿では,Mixup Augmentation を用いて新たなデータポイントを汎用的なビジナル分布として生成する可能性について検討する。
不均衡なデータセットが一般的である乳癌の問題に焦点をあてる。
論文 参考訳(メタデータ) (2023-11-13T17:45:28Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。