論文の概要: Sleep Staging from Airflow Signals Using Fourier Approximations of Persistence Curves
- arxiv url: http://arxiv.org/abs/2411.07964v1
- Date: Tue, 12 Nov 2024 17:41:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:20:42.918213
- Title: Sleep Staging from Airflow Signals Using Fourier Approximations of Persistence Curves
- Title(参考訳): 持続曲線のフーリエ近似を用いた気流信号からの睡眠安定
- Authors: Shashank Manjunath, Hau-Tieng Wu, Aarti Sathyanarayana,
- Abstract要約: 本研究では,気流信号に基づく睡眠ステージングを行うために,持続曲線(FAPC)のフーリエ近似を提案する。
全国小児病院睡眠データバンクから得られた1155名の小児睡眠研究について,XGBoostモデルを用いて評価を行った。
- 参考スコア(独自算出の注目度): 6.404122934568859
- License:
- Abstract: Sleep staging is a challenging task, typically manually performed by sleep technologists based on electroencephalogram and other biosignals of patients taken during overnight sleep studies. Recent work aims to leverage automated algorithms to perform sleep staging not based on electroencephalogram signals, but rather based on the airflow signals of subjects. Prior work uses ideas from topological data analysis (TDA), specifically Hermite function expansions of persistence curves (HEPC) to featurize airflow signals. However, finite order HEPC captures only partial information. In this work, we propose Fourier approximations of persistence curves (FAPC), and use this technique to perform sleep staging based on airflow signals. We analyze performance using an XGBoost model on 1155 pediatric sleep studies taken from the Nationwide Children's Hospital Sleep DataBank (NCHSDB), and find that FAPC methods provide complimentary information to HEPC methods alone, leading to a 4.9% increase in performance over baseline methods.
- Abstract(参考訳): 睡眠ステージング(Sleep staging)は、通常、夜間睡眠研究で採取された患者の脳波やその他の生体信号に基づいて、睡眠技術者が手動で行う、困難な作業である。
最近の研究は、脳波信号ではなく、被験者の気流信号に基づいて睡眠ステージを実行するための自動アルゴリズムを活用することを目的としている。
従来の研究では、トポロジカルデータ解析(TDA)、具体的には、持続曲線(HEPC)のハーマイト関数拡張(Hermite function expansions of persistence curves)のアイデアを用いて、気流信号を出力する。
しかし、有限次HEPCは部分的な情報のみをキャプチャする。
本研究では、持続曲線(FAPC)のフーリエ近似を提案し、この手法を用いて、気流信号に基づく睡眠ステージングを行う。
我々は,全国小児病院睡眠データバンク(NCHSDB)から採取した1155名の小児睡眠研究のXGBoostモデルを用いて,評価を行った。
関連論文リスト
- Enhancing Healthcare with EOG: A Novel Approach to Sleep Stage
Classification [1.565361244756411]
EOG信号を用いた自動睡眠ステージ分類に革新的アプローチを導入し、脳波データ取得に伴う不快感と非現実性に対処する。
提案するSE-Resnet-Transformerモデルは、生のEOG信号から5つの異なる睡眠ステージを正確に分類する。
論文 参考訳(メタデータ) (2023-09-25T16:23:39Z) - Classification of sleep stages from EEG, EOG and EMG signals by SSNet [2.1915057426589746]
睡眠段階の分類は、睡眠障害ブレスティング(SDB)病を含む睡眠関連疾患の診断において重要な役割を担っている。
我々は,CNNとLSTMに基づく2つのディープラーニングネットワークからなる,SSNetというエンドツーエンドのディープラーニングアーキテクチャを提案する。
本モデルでは, 睡眠段階の分類において, 最先端技術と比較して最高の性能を達成している。
論文 参考訳(メタデータ) (2023-07-03T01:05:24Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Enhancement on Model Interpretability and Sleep Stage Scoring
Performance with A Novel Pipeline Based on Deep Neural Network [4.296506281243336]
本稿では,アメリカ睡眠医学会の定義に従い,脳波(EEG)の表現学習のための時間周波数フレームワークを提案する。
入力された脳波スペクトログラムは、時間と周波数軸の一連のパッチに分割され、さらに表現学習を行うための繊細な深層学習ネットワークに入力される。
提案したパイプラインは、大規模なデータベース、すなわちSleep Heart Health Study (SHHS)に対して検証され、その結果、ウェイク、N2、N3ステージの競合性能が最先端の作業より優れていることが示された。
論文 参考訳(メタデータ) (2022-04-07T02:48:13Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Sleep Staging Based on Serialized Dual Attention Network [0.0]
生の脳波に基づく深層学習モデルSDANを提案する。
チャネルアテンションと空間アテンション機構を連続的に組み合わせて、キー情報をフィルタリングしハイライトする。
他の方法と比較して、N1睡眠期において優れた結果が得られる。
論文 参考訳(メタデータ) (2021-07-18T13:18:12Z) - Sleep syndromes onset detection based on automatic sleep staging
algorithm [0.0]
高速フーリエ変換は、脳波記録の30秒間のエポックに応用され、局所的な時間周波数情報を提供する。
深層畳み込みLSTMニューラルネットワークは睡眠段階分類のために訓練されている。
コード評価の結果、精度は86.43、精度は77.76、リコールは93,32, F1スコアは89.12、最終誤差は0.09だった。
論文 参考訳(メタデータ) (2021-07-07T15:38:47Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
睡眠障害は、世界中の主要な病気の1つです。
専門家が使用する基本的なツールはPolysomnogramで、睡眠中に記録された様々な信号の集合である。
専門家は、標準的なガイドラインの1つに従って異なる信号を採点する必要があります。
論文 参考訳(メタデータ) (2021-03-30T09:59:56Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。