DINO-LG: A Task-Specific DINO Model for Coronary Calcium Scoring
- URL: http://arxiv.org/abs/2411.07976v4
- Date: Wed, 20 Nov 2024 02:57:56 GMT
- Title: DINO-LG: A Task-Specific DINO Model for Coronary Calcium Scoring
- Authors: Mahmut S. Gokmen, Caner Ozcan, Cody Bumgardner,
- Abstract summary: Coronary artery calcium (CAC) scoring is key for risk assessment to prevent coronary disease.
In this study, we extend this approach by incorporating the self-supervised learning (SSL) technique of DINO (self-distillation with no labels)
The DINO model is trained on to focus specifically on calcified areas by using labels, aiming to generate features that effectively capture and highlight key characteristics.
The label-guided DINO (DINO-LG) enhances classification by distinguishing CT slices that contain calcification from those that do not, performing 57% better than the standard DINO model in this task.
- Score: 0.0
- License:
- Abstract: Coronary artery disease (CAD), one of the most common cause of mortality in the world. Coronary artery calcium (CAC) scoring using computed tomography (CT) is key for risk assessment to prevent coronary disease. Previous studies on risk assessment and calcification detection in CT scans primarily use approaches based on UNET architecture, frequently implemented on pre-built models. However, these models are limited by the availability of annotated CT scans containing CAC and suffering from imbalanced dataset, decreasing performance of CAC segmentation and scoring. In this study, we extend this approach by incorporating the self-supervised learning (SSL) technique of DINO (self-distillation with no labels) to eliminate limitations of scarce annotated data in CT scans. The DINO model's ability to train without requiring CAC area annotations enhances its robustness in generating distinct features. The DINO model is trained on to focus specifically on calcified areas by using labels, aiming to generate features that effectively capture and highlight key characteristics. The label-guided DINO (DINO-LG) enhances classification by distinguishing CT slices that contain calcification from those that do not, performing 57% better than the standard DINO model in this task. CAC scoring and segmentation tasks are performed by a basic U-NET architecture, fed specifically with CT slices containing calcified areas as identified by the DINO-LG model. This targeted identification performed by DINO-LG model improves CAC segmentation performance by approximately 10% and significant increase in CAC scoring accuracy.
Related papers
- DSCA: A Digital Subtraction Angiography Sequence Dataset and Spatio-Temporal Model for Cerebral Artery Segmentation [26.05396884171782]
We introduce a DSA Sequence-based Cerebral Artery segmentation dataset (DSCA)
Unlike existing DSA segmentation methods that focus only on a single frame, the proposed DSANet introduces a separate temporal encoding branch to capture dynamic vessel details across multiple frames.
Extensive experiments demonstrate that DSANet outperforms other state-of-the-art methods in CA segmentation, achieving a Dice of 0.9033.
arXiv Detail & Related papers (2024-06-01T07:35:21Z) - DDSB: An Unsupervised and Training-free Method for Phase Detection in Echocardiography [37.32413956117856]
We propose an unsupervised and training-free method to identify End-Diastolic (ED) and End-Systolic (ES) frames.
By identifying anchor points and analyzing directional deformation, we effectively reduce dependence on the accuracy of initial segmentation images.
Our method achieves comparable accuracy to learning-based models without their associated drawbacks.
arXiv Detail & Related papers (2024-03-19T14:51:01Z) - Multitask Deep Learning for Accurate Risk Stratification and Prediction
of Next Steps for Coronary CT Angiography Patients [26.50934421749854]
We propose a multi-task deep learning model to support risk stratification and down-stream test selection.
Our model achieved an Area Under the receiver operating characteristic Curve (AUC) of 0.76 in CAD risk stratification, and 0.72 AUC in predicting downstream tests.
arXiv Detail & Related papers (2023-09-01T08:34:13Z) - Generative Models for Reproducible Coronary Calcium Scoring [3.1746159467221253]
Coronary artery calcium (CAC) score is a strong and independent predictor of coronary heart disease (CHD) events.
CAC scoring suffers from limited interscan due to clinical definition requiring application of a fixed intensity level threshold for segmentation of calcifications.
We propose a CAC method that does not require a threshold for segmentation of CAC.
arXiv Detail & Related papers (2022-05-24T10:59:32Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation [18.58056402884405]
Lesion segmentation on computed tomography (CT) scans is an important step for precisely monitoring changes in lesion/tumor growth.
Current practices rely on an imprecise substitute called response evaluation criteria in solid tumors.
This paper proposes a convolutional neural network based weakly-supervised lesion segmentation method.
arXiv Detail & Related papers (2020-01-23T15:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.