論文の概要: Mobility-based Traffic Forecasting in a Multimodal Transport System
- arxiv url: http://arxiv.org/abs/2411.08052v1
- Date: Tue, 05 Nov 2024 18:58:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-17 08:06:16.235200
- Title: Mobility-based Traffic Forecasting in a Multimodal Transport System
- Title(参考訳): マルチモーダル交通システムにおけるモビリティに基づく交通予測
- Authors: Henock M. Mboko, Mouhamadou A. M. T. Balde, Babacar M. Ndiaye,
- Abstract要約: 本研究は,各ノード間の移動量に基づく人口動態の分析を行い,その移動量に応じて交通の影響を観測,測定,予測するものである。
本研究では,人口移動データからマルチモーダル交通ネットワークのトラフィックを予測する機械学習手法について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We study the analysis of all the movements of the population on the basis of their mobility from one node to another, to observe, measure, and predict the impact of traffic according to this mobility. The frequency of congestion on roads directly or indirectly impacts our economic or social welfare. Our work focuses on exploring some machine learning methods to predict (with a certain probability) traffic in a multimodal transportation network from population mobility data. We analyze the observation of the influence of people's movements on the transportation network and make a likely prediction of congestion on the network based on this observation (historical basis).
- Abstract(参考訳): 本研究は,各ノード間の移動量に基づく人口動態の分析を行い,その移動量に応じて交通の影響を観測,測定,予測するものである。
道路での渋滞の頻度は、我々の経済や社会福祉に直接的または間接的に影響を及ぼす。
本研究は、人口移動データからマルチモーダル交通ネットワークにおける(ある確率で)トラフィックを予測する機械学習手法の探索に重点を置いている。
本研究は、交通ネットワークにおける人々の動きの観測結果を分析し、この観測(歴史的根拠)に基づいて、ネットワーク上での混雑の予測を行う。
関連論文リスト
- A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Regional Correlation Aided Mobile Traffic Prediction with Spatiotemporal
Deep Learning [4.4959908420821675]
本稿では,日々のモバイルピークトラフィック時間と,新しい複数時間畳み込みネットワークの戦略と,長期記憶モデルを組み合わせたモバイルトラフィック予測手法を提案する。
大規模実世界のモバイルトラフィックデータに関する実験では,提案手法の有効性と有効性を確認した最先端の研究と比較して,最大28%の性能向上が見られた。
論文 参考訳(メタデータ) (2023-12-11T10:33:19Z) - Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis [6.8775337739726226]
本稿では,グラフ畳み込み深層学習アルゴリズムに基づく交通予測手法を提案する。
本研究では,宮内庁旅行調査の人的活動頻度データを活用し,活動と交通パターンの因果関係の推測能力を高める。
論文 参考訳(メタデータ) (2023-08-20T14:31:55Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
不確実量化(UQ)法は確率論的推論を誘導するためのアプローチを提供する。
複数の都市にまたがる大規模画像ベース交通データセットへの適用について検討する。
モスクワ市を事例として,交通行動に対する時間的・空間的影響を考察した。
論文 参考訳(メタデータ) (2023-08-11T13:35:52Z) - FDTI: Fine-grained Deep Traffic Inference with Roadnet-enriched Graph [10.675666104503119]
本稿では,詳細な深部交通推論をedIと呼ぶ。
道路間の関係をモデル化するために,交通信号に基づくきめ細かい交通グラフを構築した。
私たちは、都市レベルのきめ細かい交通予測を最初に実施しました。
論文 参考訳(メタデータ) (2023-06-19T14:03:42Z) - Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow [76.38515853201116]
半協調行動は、人間ドライバーの本質的な性質であり、自律運転には考慮すべきである。
新たな自律型プランナーは、社会的に準拠した軌道を生成するために、人間のドライバーの社会的価値指向(SVO)を考慮することができる。
エージェントが反復的最適応答のゲーム理論バージョンをデプロイする暗黙的な半協調運転について検討する。
論文 参考訳(メタデータ) (2023-04-23T16:01:36Z) - Modeling Network-level Traffic Flow Transitions on Sparse Data [6.756998301171409]
本稿では,スパースデータからネットワークレベルのトラフィックフローを予測できるDTIGNNを提案する。
提案手法は最先端の手法よりも優れており,交通機関の意思決定支援に有効であることを示す。
論文 参考訳(メタデータ) (2022-08-13T13:30:35Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Multivariate and Propagation Graph Attention Network for
Spatial-Temporal Prediction with Outdoor Cellular Traffic [25.081221761654756]
本稿では,電話会社における1日20億件以上のレコードから抽出した屋外セルラートラフィックを用いて,この問題に対処する。
都市部における道路交差点について検討し,歴史的屋外セル・トラフィックが与えられたすべての交差点の今後の屋外セル・トラフィックを予測することを目的としている。
実験により,提案したモデルが,我々のデータセットの最先端手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2021-08-18T17:31:11Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。