論文の概要: BillBoard Splatting (BBSplat): Learnable Textured Primitives for Novel View Synthesis
- arxiv url: http://arxiv.org/abs/2411.08508v3
- Date: Tue, 11 Feb 2025 10:38:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 16:10:29.452432
- Title: BillBoard Splatting (BBSplat): Learnable Textured Primitives for Novel View Synthesis
- Title(参考訳): BillBoard Splatting (BBSplat):新しいビュー合成のための学習可能なテクスチャプリミティブ
- Authors: David Svitov, Pietro Morerio, Lourdes Agapito, Alessio Del Bue,
- Abstract要約: 本稿では,テクスチャ化された幾何学的プリミティブに基づく3次元シーン表現のための新しい手法として,BBSplat(Billboard Splatting)を提案する。
BBSplatはこのシーンを、学習可能なRGBテクスチャと、その形状を制御するアルファマップを備えた、最適化可能なテクスチャ化された平面プリミティブのセットとして表現している。
- 参考スコア(独自算出の注目度): 24.094129395653134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present billboard Splatting (BBSplat) - a novel approach for 3D scene representation based on textured geometric primitives. BBSplat represents the scene as a set of optimizable textured planar primitives with learnable RGB textures and alpha-maps to control their shape. BBSplat primitives can be used in any Gaussian Splatting pipeline as drop-in replacements for Gaussians. The proposed primitives close the rendering quality gap between 2D and 3D Gaussian Splatting (GS), preserving the accurate mesh extraction ability of 2D primitives. Our novel regularization term encourages textures to have a sparser structure, unlocking an efficient compression that leads to a reduction in the storage space of the model. Our experiments show the efficiency of BBSplat on standard datasets of real indoor and outdoor scenes such as Tanks&Temples, DTU, and Mip-NeRF-360.
- Abstract(参考訳): 本稿では,テクスチャ化された幾何学的プリミティブに基づく3次元シーン表現のための新しい手法として,BBSplat(Billboard Splatting)を提案する。
BBSplatはこのシーンを、学習可能なRGBテクスチャと、その形状を制御するアルファマップを備えた、最適化可能なテクスチャ化された平面プリミティブのセットとして表現している。
BBSplatプリミティブは任意のガウススティングパイプラインでガウスのドロップイン置換として使用することができる。
提案したプリミティブは、2Dプリミティブと3Dガウススプラッティング(GS)のレンダリング品質ギャップを埋め、2Dプリミティブの正確なメッシュ抽出能力を維持する。
我々の新しい正規化用語は、テクスチャがスペーサー構造を持つことを奨励し、効率的な圧縮を解き、モデルの記憶空間を減少させる。
実験では,室内および屋外の実際のシーン,例えばTamps&Temples,DTU,Mip-NeRF-360の標準データセットに対するBBSplatの有効性を示した。
関連論文リスト
- EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
既存のNeRFおよび3DGSベースの手法は、フォトリアリスティックレンダリングを実現する上で有望な結果を示すが、スローでシーンごとの最適化が必要である。
本稿では,都市景観を対象とした効率的な3次元ガウススプレイティングモデルEVolSplatを紹介する。
論文 参考訳(メタデータ) (2025-03-26T02:47:27Z) - Planar Gaussian Splatting [42.74999794635269]
Planar Gaussian Splatting (PGS)は、3D幾何学を学習し、シーンの3D平面を解析する新しいニューラルネットワーク手法である。
PGSは3次元平面ラベルや深度監視を必要とせず、3次元平面再構成における最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-12-02T19:46:43Z) - 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
多視点画像から幾何学的に有意な放射場をモデル化するためのプリミティブとして3次元滑らかな凸を利用した3次元凸法(3DCS)を提案する。
3DCSは、MipNeizer, Tanks and Temples, Deep Blendingなどのベンチマークで、3DGSよりも優れたパフォーマンスを実現している。
本結果は,高品質なシーン再構築のための新しい標準となる3Dコンベクシングの可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T14:31:39Z) - GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplattingは、3DGSを明示的な幾何学的ガイダンスと微分可能なPBR方程式で拡張する新しいハイブリッド表現である。
多様なデータセットにわたる総合的な評価は、GeoSplattingの優位性を示している。
論文 参考訳(メタデータ) (2024-10-31T17:57:07Z) - Epipolar-Free 3D Gaussian Splatting for Generalizable Novel View Synthesis [25.924727931514735]
一般化可能な3DGSは、フィードフォワード推論方式でスパースビュー観測から新しいシーンを再構築することができる。
既存の手法は、複雑な現実世界のシーンでは信頼できないエピポーラ先行に大きく依存している。
一般化可能な新規ビュー合成のための効率的なフィードフォワード3DGSモデルであるeFreeSplatを提案する。
論文 参考訳(メタデータ) (2024-10-30T08:51:29Z) - GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction [3.043712258792239]
ニューラルネットワークSDFと3DGSを統合した統合フレームワークを提案する。
このフレームワークには学習可能なニューラルネットワークSDFフィールドが組み込まれており、ガウスの密度化と刈り取りをガイドしている。
本手法は, 表面再構成と新しいビュー合成の両面において, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-05-30T03:46:59Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
Compressed Gaussian Splatting (CompGS) という,効率的な3次元シーン表現を提案する。
我々は少数のアンカープリミティブを予測に利用し、プリミティブの大多数を非常にコンパクトな残留形にカプセル化することができる。
実験の結果,提案手法は既存の手法よりも優れており,モデル精度とレンダリング品質を損なうことなく,3次元シーン表現のコンパクト性に優れていた。
論文 参考訳(メタデータ) (2024-04-15T04:50:39Z) - InstantSplat: Sparse-view Gaussian Splatting in Seconds [91.77050739918037]
InstantSplatは,光速でスパークビュー3Dシーンを再現する新しい手法である。
InstantSplatでは,3Dシーン表現とカメラポーズを最適化する,自己管理フレームワークを採用している。
3D-GSの従来のSfMと比較して、30倍以上の再現を達成し、視覚的品質(SSIM)を0.3755から0.7624に改善する。
論文 参考訳(メタデータ) (2024-03-29T17:29:58Z) - Hybrid Explicit Representation for Ultra-Realistic Head Avatars [55.829497543262214]
我々は,超現実的な頭部アバターを作成し,それをリアルタイムにレンダリングする新しい手法を提案する。
UVマップされた3Dメッシュは滑らかな表面のシャープでリッチなテクスチャを捉えるのに使われ、3Dガウス格子は複雑な幾何学構造を表現するために用いられる。
モデル化された結果が最先端のアプローチを上回る実験を行ないました。
論文 参考訳(メタデータ) (2024-03-18T04:01:26Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z) - Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis [0.552480439325792]
スパース画像集合からの新規なビュー合成のために,3次元ガウススプラット表現を最適化した高忠実度シーン再構成を導入した。
本稿では,感性を考慮したベクトルクラスタリングと量子化学習を併用した3次元ガウススプラット表現を用いて,方向色とガウスパラメータを圧縮する手法を提案する。
論文 参考訳(メタデータ) (2023-11-17T14:40:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。