論文の概要: A Machine Learning Algorithm for Finite-Horizon Stochastic Control Problems in Economics
- arxiv url: http://arxiv.org/abs/2411.08668v1
- Date: Wed, 13 Nov 2024 15:02:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:10:32.790963
- Title: A Machine Learning Algorithm for Finite-Horizon Stochastic Control Problems in Economics
- Title(参考訳): 経済における有限水平確率制御問題に対する機械学習アルゴリズム
- Authors: Xianhua Peng, Steven Kou, Lekang Zhang,
- Abstract要約: 深層ニューラルネットワークに基づく有限水平制御問題を解くための機械学習アルゴリズムを提案する。
アルゴリズムには3つの特徴がある:(1)高次元(例えば100次元以上)と有限水平時間不均一な制御問題、(2)各反復における性能改善の単調性、そして(3)ベルマン方程式に依存しない。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose a machine learning algorithm for solving finite-horizon stochastic control problems based on a deep neural network representation of the optimal policy functions. The algorithm has three features: (1) It can solve high-dimensional (e.g., over 100 dimensions) and finite-horizon time-inhomogeneous stochastic control problems. (2) It has a monotonicity of performance improvement in each iteration, leading to good convergence properties. (3) It does not rely on the Bellman equation. To demonstrate the efficiency of the algorithm, it is applied to solve various finite-horizon time-inhomogeneous problems including recursive utility optimization under a stochastic volatility model, a multi-sector stochastic growth, and optimal control under a dynamic stochastic integration of climate and economy model with eight-dimensional state vectors and 600 time periods.
- Abstract(参考訳): 最適ポリシ関数のディープニューラルネットワーク表現に基づく有限水平確率制御問題の解法を提案する。
1)高次元(例えば100次元以上)と有限水平時間不均質確率制御問題を解くことができる。
2) 各反復において性能改善の単調性を持ち、良好な収束性をもたらす。
(3)ベルマン方程式に依存しない。
アルゴリズムの効率性を示すために,確率的ボラティリティモデルによる再帰的ユーティリティ最適化,マルチセクタ確率的成長,8次元状態ベクトルと600時間周期による気候・経済モデルの動的確率的積分による最適制御など,様々な有限水平時間不均質問題の解法を適用した。
関連論文リスト
- A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
最適制御(SOC)における一般問題の解法のためのシミュレーションフリーアルゴリズムを提案する。
既存の手法とは異なり、我々の手法は随伴問題の解を必要としない。
論文 参考訳(メタデータ) (2024-10-07T16:16:53Z) - Analysis of the Non-variational Quantum Walk-based Optimisation Algorithm [0.0]
本稿では,多種多様な最適化問題を解くために設計された非変分量子アルゴリズムを詳細に紹介する。
このアルゴリズムは、増幅状態の繰り返しの準備と測定から最適解とほぼ最適解を返す。
論文 参考訳(メタデータ) (2024-07-29T13:54:28Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Two-Timescale Stochastic Approximation for Bilevel Optimisation Problems
in Continuous-Time Models [0.0]
本研究では,連続時間モデルにおける二段階最適化問題に対する連続時間2時間スケール近似アルゴリズムの特性を解析する。
我々はこのアルゴリズムの弱収束率を中心極限定理の形で得る。
論文 参考訳(メタデータ) (2022-06-14T17:12:28Z) - A deep learning method for solving stochastic optimal control problems driven by fully-coupled FBSDEs [1.0703175070560689]
最初にこの問題をStackelberg微分ゲーム問題(リーダー-フォロワー問題)に変換する。
ユーティリティーモデルによる投資消費問題の2つの例を計算した。
その結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-04-12T13:31:19Z) - Continuous-Time Fitted Value Iteration for Robust Policies [93.25997466553929]
ハミルトン・ヤコビ・ベルマン方程式の解法は、制御、ロボティクス、経済学を含む多くの領域において重要である。
連続適合値反復(cFVI)とロバスト適合値反復(rFVI)を提案する。
これらのアルゴリズムは、多くの連続制御問題の非線形制御-アフィンダイナミクスと分離可能な状態とアクション報酬を利用する。
論文 参考訳(メタデータ) (2021-10-05T11:33:37Z) - Deep Learning for Constrained Utility Maximisation [0.0]
本稿では,ディープラーニングを用いた制御問題を解くための2つのアルゴリズムを提案する。
最初のアルゴリズムはハミルトン・ヤコビ・ベルマン方程式を通じてマルコフ問題を解く。
2つ目は、非マルコフ的問題を解くために双対法の全力を利用する。
論文 参考訳(メタデータ) (2020-08-26T18:40:57Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。