Efficient Density Control for 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2411.10133v1
- Date: Fri, 15 Nov 2024 12:12:56 GMT
- Title: Efficient Density Control for 3D Gaussian Splatting
- Authors: Xiaobin Deng, Changyu Diao, Min Li, Ruohan Yu, Duanqing Xu,
- Abstract summary: We introduce a more efficient long-axis split operation to replace the original clone and split.
We also propose a simple adaptive pruning technique to reduce the number of low-opacity Gaussians.
We evaluate our proposed method on various challenging real-world datasets.
- Score: 3.6379656024631215
- License:
- Abstract: 3D Gaussian Splatting (3DGS) excels in novel view synthesis, balancing advanced rendering quality with real-time performance. However, in trained scenes, a large number of Gaussians with low opacity significantly increase rendering costs. This issue arises due to flaws in the split and clone operations during the densification process, which lead to extensive Gaussian overlap and subsequent opacity reduction. To enhance the efficiency of Gaussian utilization, we improve the adaptive density control of 3DGS. First, we introduce a more efficient long-axis split operation to replace the original clone and split, which mitigates Gaussian overlap and improves densification efficiency.Second, we propose a simple adaptive pruning technique to reduce the number of low-opacity Gaussians. Finally, by dynamically lowering the splitting threshold and applying importance weighting, the efficiency of Gaussian utilization is further improved.We evaluate our proposed method on various challenging real-world datasets. Experimental results show that our Efficient Density Control (EDC) can enhance both the rendering speed and quality.
Related papers
- Mini-Splatting2: Building 360 Scenes within Minutes via Aggressive Gaussian Densification [4.733612131945549]
Mini-Splatting2 achieves a balanced trade-off among optimization time, the number of Gaussians, and rendering quality.
Our work sets the stage for more efficient, high-quality 3D scene modeling in real-world applications.
arXiv Detail & Related papers (2024-11-19T11:47:40Z) - AdR-Gaussian: Accelerating Gaussian Splatting with Adaptive Radius [38.774337140911044]
3D Gaussian Splatting (3DGS) is a recent explicit 3D representation that has achieved high-quality reconstruction and real-time rendering of complex scenes.
We propose AdR-Gaussian, which moves part of serial culling in Render stage into the earlier Preprocess stage to enable parallel culling.
Our contributions are threefold, achieving a rendering speed of 310% while maintaining equivalent or even better quality than the state-of-the-art.
arXiv Detail & Related papers (2024-09-13T09:32:38Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
We propose learning-to-prune 3DGS, where a trainable binary mask is applied to the importance score that can find optimal pruning ratio automatically.
Experiments have shown that LP-3DGS consistently produces a good balance that is both efficient and high quality.
arXiv Detail & Related papers (2024-05-29T05:58:34Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
arXiv Detail & Related papers (2024-04-15T04:50:39Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering [42.91830228828405]
We present a novel hierarchicalization approach that culls splats with minimal processing overhead.
Our approach is only 4% slower on average than the original Gaussian Splatting.
rendering performance is nearly doubled, making our approach 1.6x faster than the original Gaussian Splatting.
arXiv Detail & Related papers (2024-02-01T11:46:44Z) - HiFi4G: High-Fidelity Human Performance Rendering via Compact Gaussian
Splatting [48.59338619051709]
HiFi4G is an explicit and compact Gaussian-based approach for high-fidelity human performance rendering from dense footage.
It achieves a substantial compression rate of approximately 25 times, with less than 2MB of storage per frame.
arXiv Detail & Related papers (2023-12-06T12:36:53Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
We propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously.
Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space.
In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks.
arXiv Detail & Related papers (2023-09-28T17:55:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.