Mitigating Sycophancy in Decoder-Only Transformer Architectures: Synthetic Data Intervention
- URL: http://arxiv.org/abs/2411.10156v5
- Date: Thu, 20 Mar 2025 13:29:49 GMT
- Title: Mitigating Sycophancy in Decoder-Only Transformer Architectures: Synthetic Data Intervention
- Authors: Libo Wang,
- Abstract summary: This research applies synthetic data intervention technology to the decoder-only transformer architecture.<n>The results show that the SDI training model supports the technology in terms of accuracy rate and sycophancy rate.
- Score: 4.586907225774023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To address the sycophancy problem caused by reinforcement learning from human feedback in large language models, this research applies synthetic data intervention technology to the decoder-only transformer architecture. Based on the research gaps in the existing literature, the researcher designed an experimental process to reduce the tendency of models to cater by generating diversified data, and used GPT4o as an experimental tool for verification. The experiment used 100 true and false questions, and compared the performance of the model trained with synthetic data intervention and the original untrained model on multiple indicators. The results show that the SDI training model supports the technology in terms of accuracy rate and sycophancy rate and has significant effectiveness in reducing sycophancy phenomena.
Related papers
- A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops [55.07063067759609]
High-quality data is essential for training large generative models, yet the vast reservoir of real data available online has become nearly depleted.
Models increasingly generate their own data for further training, forming Self-consuming Training Loops (STLs)
Some models degrade or even collapse, while others successfully avoid these failures, leaving a significant gap in theoretical understanding.
arXiv Detail & Related papers (2025-02-26T06:18:13Z) - Physics-Informed Deep Learning Model for Line-integral Diagnostics Across Fusion Devices [20.883836707493213]
Rapid reconstruction of 2D plasma profiles from line-integral measurements is important in nuclear fusion.
This paper introduces a physics-informed model architecture called Onion, that can enhance the performance of models.
arXiv Detail & Related papers (2024-11-27T08:15:23Z) - Advancing Post-OCR Correction: A Comparative Study of Synthetic Data [3.997809845676911]
We introduce a novel algorithm that leverages computer vision feature detection algorithms to calculate glyph similarity for constructing post-OCR synthetic data.
We demonstrate that models like ByT5 can significantly reduce Character Error Rates (CER) without the need for manually annotated data.
arXiv Detail & Related papers (2024-08-05T05:56:37Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
This paper introduces Knowledge Recycling (KR), a pipeline designed to optimise the generation and use of synthetic data for training downstream classifiers.
At the heart of this pipeline is Generative Knowledge Distillation (GKD), the proposed technique that significantly improves the quality and usefulness of the information.
The results show a significant reduction in the performance gap between models trained on real and synthetic data, with models based on synthetic data outperforming those trained on real data in some cases.
arXiv Detail & Related papers (2024-07-22T10:31:07Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Private Synthetic Data Meets Ensemble Learning [15.425653946755025]
When machine learning models are trained on synthetic data and then deployed on real data, there is often a performance drop.
We introduce a new ensemble strategy for training downstream models, with the goal of enhancing their performance when used on real data.
arXiv Detail & Related papers (2023-10-15T04:24:42Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - From Zero to Hero: Detecting Leaked Data through Synthetic Data Injection and Model Querying [10.919336198760808]
We introduce a novel methodology to detect leaked data that are used to train classification models.
textscLDSS involves injecting a small volume of synthetic data--characterized by local shifts in class distribution--into the owner's dataset.
This enables the effective identification of models trained on leaked data through model querying alone.
arXiv Detail & Related papers (2023-10-06T10:36:28Z) - Improving Surrogate Model Robustness to Perturbations for Dynamical Systems Through Machine Learning and Data Assimilation [0.0789257770465417]
We propose a novel framework that combines machine learning and data assimilation techniques to improve surrogate models.
We demonstrate that our framework substantially improves the accuracy of surrogate models under input perturbations.
arXiv Detail & Related papers (2023-07-19T05:45:05Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
Deep learning in computer vision has achieved great success with the price of large-scale labeled training data.
The uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist.
To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization.
arXiv Detail & Related papers (2023-03-16T09:03:52Z) - Qualitative Data Augmentation for Performance Prediction in VLSI
circuits [2.1227526213206542]
This work proposes generating and evaluating artificial data using generative adversarial networks (GANs) for circuit data.
The training data is obtained by various simulations in the Cadence Virtuoso, HSPICE, and Microcap design environment with TSMC 180nm and 22nm CMOS technology nodes.
The experimental results show that the proposed artificial data generation significantly improves ML models and reduces the percentage error by more than 50% of the original percentage error.
arXiv Detail & Related papers (2023-02-15T10:14:12Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - BeCAPTCHA-Type: Biometric Keystroke Data Generation for Improved Bot
Detection [63.447493500066045]
This work proposes a data driven learning model for the synthesis of keystroke biometric data.
The proposed method is compared with two statistical approaches based on Universal and User-dependent models.
Our experimental framework considers a dataset with 136 million keystroke events from 168 thousand subjects.
arXiv Detail & Related papers (2022-07-27T09:26:15Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z) - A Model-Based Approach to Synthetic Data Set Generation for
Patient-Ventilator Waveforms for Machine Learning and Educational Use [0.0]
We propose a model-based approach to generate a synthetic data set for machine learning and educational use.
We generated a synthetic data set using 9 different patient archetypes, which are derived from measurements in the literature.
arXiv Detail & Related papers (2021-03-29T15:10:17Z) - A study of traits that affect learnability in GANs [0.0]
Generative Adversarial Networks GANs are algorithmic architectures that use two neural networks, pitting one against the opposite so as to come up with new, synthetic instances of data that can pass for real data.
In this paper, we perform empirical experiments using parameterized synthetic datasets to probe what traits affect learnability.
arXiv Detail & Related papers (2020-11-27T13:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.