論文の概要: Distributed quantum logic algorithm
- arxiv url: http://arxiv.org/abs/2411.11979v1
- Date: Mon, 18 Nov 2024 19:08:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:35:49.482990
- Title: Distributed quantum logic algorithm
- Title(参考訳): 分散量子論理アルゴリズム
- Authors: Boris Arseniev,
- Abstract要約: 本研究は、並列ゲート実行を可能にする補助量子ビットを導入して回路深さを低減する方法を検討する。
深さ$Oleft(M n2right)$,$M = M(n)$は、深さ$Oleft(log_2(M) n2right)$で操作する深さ$Oleft(M nright)$ qubitsの回路に変換可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Parallel computation enables multiple processors to execute different parts of a task simultaneously, improving processing speed and efficiency. In quantum computing, parallel gate implementation involves executing gates independently in different registers, directly impacting the circuit depth, the number of sequential quantum gate operations, and thus the algorithm execution time. This work examines a method for reducing circuit depth by introducing auxiliary qubits to enable parallel gate execution, potentially enhancing the performance of quantum simulations on near-term quantum devices. We show that any circuit on $n$ qubits with depth $O\left(M n^2\right)$, where $M = M(n)$ is some function of $n$, can be transformed into a circuit with depth $O\left(\log_2(M) n^2\right)$ operating on $O\left(M n\right)$ qubits. This technique may be particularly useful in noisy environments, where recent findings indicate that only the final $O\left(\log n\right)$ layers influence the expectation value of observables. It may also optimize Trotterization by exponentially reducing the number of Trotter steps. Additionally, the method may offer advantages for distributed quantum computing, and the intuition of treating quantum states as gates and operators as vectors used in this work may have broader applications in quantum computation.
- Abstract(参考訳): 並列計算により、複数のプロセッサがタスクの異なる部分を同時に実行でき、処理速度と効率が向上する。
量子コンピューティングでは、並列ゲートの実装は異なるレジスタでゲートを独立に実行し、回路深さ、シーケンシャルな量子ゲート演算の数、したがってアルゴリズムの実行時間に直接影響する。
本研究は、並列ゲート実行を可能にする補助量子ビットを導入し、短期量子デバイスにおける量子シミュレーションの性能を高めることにより、回路深さを低減する方法を検討する。
深さ$O\left(M n^2\right)$,$M = M(n)$ は、深さ$O\left(M) n^2\right)$ qubits の回路に変換可能であることを示す。
この手法はノイズの多い環境では特に有用であり、最近の研究では、最終的な$O\left(\log n\right)$レイヤのみが可観測物の期待値に影響を与えることが示されている。
また、トロッターのステップ数を指数関数的に減少させることでトロッター化を最適化することもできる。
さらに、この手法は分散量子コンピューティングの利点を提供し、量子状態をゲートとして、演算子をベクトルとして扱う直感は、量子計算に幅広い応用をもたらす可能性がある。
関連論文リスト
- SWAP-less Implementation of Quantum Algorithms [0.0]
本稿では,接続性に制限のあるデバイスにアルゴリズムを実装するために,パリティ量子情報のフローを追跡するフォーマリズムを提案する。
我々は、エンタングゲートが量子状態を操作するだけでなく、量子情報の伝達にも活用できるという事実を活用している。
論文 参考訳(メタデータ) (2024-08-20T14:51:00Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Quantum circuit for multi-qubit Toffoli gate with optimal resource [6.727984016678534]
我々は、$O(log n)$-depthと$O(n)$-sizeしか持たない、$n$-Toffoliゲートと一般的なマルチコントロールユニタリのための新しい量子回路を設計する。
我々は、補助量子ビットを使わずに、マルチキュービットトフォリゲートの量子回路の実装には指数的精度のゲートを使わなければならないことを示した。
論文 参考訳(メタデータ) (2024-02-07T17:53:21Z) - Efficient implementation of discrete-time quantum walks on quantum computers [0.0]
本稿では、離散時間量子ウォーク(DTQW)モデルを実装した効率的でスケーラブルな量子回路を提案する。
DTQWの時間ステップ$t$の場合、提案回路はO(n2 + nt)$2キュービットゲートしか必要とせず、現在の最も効率的な実装は$O(n2 t)$である。
論文 参考訳(メタデータ) (2024-02-02T19:11:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Efficient parallelization of quantum basis state shift [0.0]
我々は、異なる方向のシフトを並列に組み込むことで、状態シフトアルゴリズムを最適化する。
これにより、現在知られている方法と比較して量子回路の深さが大幅に減少する。
1次元および周期的なシフトに注目するが、より複雑なケースに拡張できる点に留意する。
論文 参考訳(メタデータ) (2023-04-04T11:01:08Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
我々は、$Theta(n)$-depth回路は、$O(ndlog d)$ acillary qubitsを持つ$Theta(log(nd))で作成可能であることを示す。
我々は、ハミルトンシミュレーション、方程式の線形系解法、量子ランダムアクセスメモリの実現など、異なる量子コンピューティングタスクにおける結果の適用について論じる。
論文 参考訳(メタデータ) (2022-01-27T13:16:30Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
量子コンピュータ上で励起状態を作成するための2つの異なる方法を研究する。
シミュレーションおよび実量子デバイス上でこれらの手法をベンチマークする。
これらの結果から,フォールトトレラントデバイスに優れたスケーリングを実現するために設計された量子技術が,接続性やゲート忠実性に制限されたデバイスに実用的なメリットをもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-28T17:21:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
変分量子アルゴリズムは計算的に難しい問題を解くのに有望であると考えられている。
本稿では,QAOAの回路深度依存性能について実験的に検討する。
この結果から, 連続ゲートセットの使用は, 短期量子コンピュータの影響を拡大する上で重要な要素である可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-11T17:20:51Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。