AI Guided Early Screening of Cervical Cancer
- URL: http://arxiv.org/abs/2411.12681v1
- Date: Tue, 19 Nov 2024 17:39:03 GMT
- Title: AI Guided Early Screening of Cervical Cancer
- Authors: Dharanidharan S I, Suhitha Renuka S V, Ajishi Singh, Sheena Christabel Pravin,
- Abstract summary: This project focuses on preprocessing, enhancing, and organizing a medical imaging dataset.
There are two classifications in the dataset: normal and abnormal, along with extra noise fluctuations.
To create precise and effective machine learning models for medical anomaly detection, high-quality input data is ensured via this thorough approach.
- Score: 0.0
- License:
- Abstract: In order to support the creation of reliable machine learning models for anomaly detection, this project focuses on preprocessing, enhancing, and organizing a medical imaging dataset. There are two classifications in the dataset: normal and abnormal, along with extra noise fluctuations. In order to improve the photographs' quality, undesirable artifacts, including visible medical equipment at the edges, were eliminated using central cropping. Adjusting the brightness and contrast was one of the additional preprocessing processes. Normalization was then performed to normalize the data. To make classification jobs easier, the dataset was methodically handled by combining several image subsets into two primary categories: normal and pathological. To provide a strong training set that adapts well to real-world situations, sophisticated picture preprocessing techniques were used, such as contrast enhancement and real-time augmentation (including rotations, zooms, and brightness modifications). To guarantee efficient model evaluation, the data was subsequently divided into training and testing subsets. In order to create precise and effective machine learning models for medical anomaly detection, high-quality input data is ensured via this thorough approach. Because of the project pipeline's flexible and scalable design, it can be easily integrated with bigger clinical decision-support systems.
Related papers
- TSynD: Targeted Synthetic Data Generation for Enhanced Medical Image Classification [0.011037620731410175]
This work aims to guide the generative model to synthesize data with high uncertainty.
We alter the feature space of the autoencoder through an optimization process.
We improve the robustness against test time data augmentations and adversarial attacks on several classifications tasks.
arXiv Detail & Related papers (2024-06-25T11:38:46Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
This paper examines two scenarios: first, using convolutional neural networks (CNNs) to accurately classify defects in an image dataset from AM and second, applying active learning techniques to the developed classification model.
This allows the construction of a human-in-the-loop mechanism to reduce the size of the data required to train and generate training data.
arXiv Detail & Related papers (2023-07-14T14:36:58Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Metadata-enhanced contrastive learning from retinal optical coherence tomography images [7.932410831191909]
We extend conventional contrastive frameworks with a novel metadata-enhanced strategy.
Our approach employs widely available patient metadata to approximate the true set of inter-image contrastive relationships.
Our approach outperforms both standard contrastive methods and a retinal image foundation model in five out of six image-level downstream tasks.
arXiv Detail & Related papers (2022-08-04T08:53:15Z) - Learning Discriminative Representation via Metric Learning for
Imbalanced Medical Image Classification [52.94051907952536]
We propose embedding metric learning into the first stage of the two-stage framework specially to help the feature extractor learn to extract more discriminative feature representations.
Experiments mainly on three medical image datasets show that the proposed approach consistently outperforms existing onestage and two-stage approaches.
arXiv Detail & Related papers (2022-07-14T14:57:01Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Advancing diagnostic performance and clinical usability of neural
networks via adversarial training and dual batch normalization [2.1699022621790736]
We let six radiologists rate the interpretability of saliency maps in datasets of X-rays, computed tomography, and magnetic resonance imaging scans.
We found that the accuracy of adversarially trained models was equal to standard models when sufficiently large datasets and dual batch norm training were used.
arXiv Detail & Related papers (2020-11-25T20:41:01Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Advanced Deep Learning Methodologies for Skin Cancer Classification in
Prodromal Stages [0.3058685580689604]
The proposed study consists of two main phases.
In the first phase, the images are preprocessed to remove the clutters thus producing a refined version of training images.
The experimental results demonstrate notable improvement in train and validation accuracy by using the refined version of images of both the networks.
The final test accuracy using state of art Inception-v3 network was 86%.
arXiv Detail & Related papers (2020-03-13T16:07:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.