論文の概要: Visual Cue Enhancement and Dual Low-Rank Adaptation for Efficient Visual Instruction Fine-Tuning
- arxiv url: http://arxiv.org/abs/2411.12787v1
- Date: Tue, 19 Nov 2024 11:03:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:13:12.573478
- Title: Visual Cue Enhancement and Dual Low-Rank Adaptation for Efficient Visual Instruction Fine-Tuning
- Title(参考訳): 視覚インストラクションファインタニングのためのビジュアルキューの強化と2次元低ランク適応
- Authors: Pengkun Jiao, Bin Zhu, Jingjing Chen, Chong-Wah Ngo, Yu-Gang Jiang,
- Abstract要約: VCE(Vision Cue Enhancement)とDual-LoRA(Dual-LoRA)の2つの新しいアプローチによる効率的な微調整フレームワークを提案する。
VCEは、マルチレベルビジュアルキューを統合することで、視覚プロジェクタを強化し、きめ細かい視覚的特徴をキャプチャするモデルの能力を向上させる。
Dual-LoRAは、命令チューニングのための2つの低ランク構造を導入し、スキルとタスク空間に学習を分離し、様々なタスクにまたがって正確な制御と効率的な適応を可能にする。
- 参考スコア(独自算出の注目度): 102.18178065928426
- License:
- Abstract: Fine-tuning multimodal large language models (MLLMs) presents significant challenges, including a reliance on high-level visual features that limits fine-grained detail comprehension, and data conflicts that arise from task complexity. To address these issues, we propose an efficient fine-tuning framework with two novel approaches: Vision Cue Enhancement (VCE) and Dual Low-Rank Adaptation (Dual-LoRA). VCE enhances the vision projector by integrating multi-level visual cues, improving the model's ability to capture fine-grained visual features. Dual-LoRA introduces a dual low-rank structure for instruction tuning, decoupling learning into skill and task spaces to enable precise control and efficient adaptation across diverse tasks. Our method simplifies implementation, enhances visual comprehension, and improves adaptability. Experiments on both downstream tasks and general benchmarks demonstrate the effectiveness of our proposed approach.
- Abstract(参考訳): 微調整型マルチモーダル大言語モデル(MLLM)は、細かな詳細理解を制限する高レベルの視覚的特徴への依存や、タスクの複雑さから生じるデータ競合など、重要な課題を提示する。
これらの問題に対処するために、視覚キュー強化(VCE)とデュアルローランド適応(Dual-LoRA)の2つの新しいアプローチによる効率的な微調整フレームワークを提案する。
VCEは、マルチレベルのビジュアルキューを統合することで、視覚プロジェクタを強化し、きめ細かい視覚的特徴をキャプチャするモデルの能力を向上させる。
Dual-LoRAは、命令チューニングのための2つの低ランク構造を導入し、スキルとタスク空間に学習を分離し、様々なタスクにまたがって正確な制御と効率的な適応を可能にする。
本手法は,実装を単純化し,視覚的理解を高め,適応性を向上させる。
ダウンストリームタスクと一般ベンチマークの両方の実験により,提案手法の有効性が示された。
関連論文リスト
- VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use [74.39058448757645]
視覚言語モデル(VLM)を強化するエージェントフレームワークであるVipActを提案する。
VipActは、タスク要求の分析、計画、調整を管理するオーケストレータエージェントと、特定のタスクを処理する専門エージェントで構成される。
様々な視覚認知タスクを特徴とするベンチマーク上でのVipActの評価を行い,実験結果から大幅な性能向上が得られた。
論文 参考訳(メタデータ) (2024-10-21T18:10:26Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) は、異なるモデルに転送可能な視覚的プロンプトを生成するためのシンプルで効果的なアプローチである。
本稿では,既存の視覚的プロンプト手法のクロスモデル特徴劣化問題に対処し,学習したプロンプトの伝達可能性を高めるための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-04-17T09:39:07Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Enhancing Vision-Language Few-Shot Adaptation with Negative Learning [11.545127156146368]
我々は,タスク固有の知識をより効率的に活用するための,シンプルで効果的な否定的学習手法SimNLを提案する。
そこで本研究では,雑音を緩和するために,プラグアンドプレイによる数発のインスタンス再重み付け手法を提案する。
提案したSimNLは,少数ショット学習とドメイン一般化の両タスクにおいて,既存の最先端手法よりも優れていることを確認した。
論文 参考訳(メタデータ) (2024-03-19T17:59:39Z) - M2-CLIP: A Multimodal, Multi-task Adapting Framework for Video Action
Recognition [39.92547393649842]
これらの課題に対処するために,新しいMultimodal,Multi-task CLIP適応フレームワークの名前付きフレームワークを導入する。
ゼロショットシナリオにおける強力な一般化を維持しつつ、教師あり学習における例外的な性能を示す。
論文 参考訳(メタデータ) (2024-01-22T02:03:31Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVAは、MLLMの知覚能力を改善するためにピクセル、地域、グローバル機能を統合する革新的な統合マルチタスクフレームワークである。
この研究は、277Kサンプルからなるマスクベースの新しいマルチタスクデータセットに貢献し、MLLMの微粒化知覚能力に挑戦し評価する。
論文 参考訳(メタデータ) (2023-11-09T13:18:27Z) - Image Difference Captioning with Pre-training and Contrastive Learning [45.59621065755761]
画像差分キャプション(IDC)タスクは、自然言語と類似した2つの画像の視覚的差異を記述することを目的としている。
このタスクの主な課題は、1)より強力な視覚と言語関連を学習する必要のある、きめ細かい視覚的差異、2)手動アノテーションのコストの2つの側面にある。
本稿では,これらの課題に対処するために,事前学習ファインタニングパラダイムに基づく新しいモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-09T06:14:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。