論文の概要: Engagement-Driven Content Generation with Large Language Models
- arxiv url: http://arxiv.org/abs/2411.13187v4
- Date: Wed, 04 Jun 2025 16:02:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 18:52:34.89549
- Title: Engagement-Driven Content Generation with Large Language Models
- Title(参考訳): 大規模言語モデルを用いたエンゲージメント駆動型コンテンツ生成
- Authors: Erica Coppolillo, Federico Cinus, Marco Minici, Francesco Bonchi, Giuseppe Manco,
- Abstract要約: 大規模言語モデル(LLM)は1対1の相互作用において重要な説得力を示す。
相互接続されたユーザーと複雑な意見のダイナミクスがユニークな課題を引き起こすソーシャルネットワークにおける彼らの影響力は、いまだ過小評価されている。
本稿では,emphCan LLMがソーシャルネットワーク上でユーザエンゲージメントを最大化する有意義なコンテンツを生成するかという研究課題に対処する。
- 参考スコア(独自算出の注目度): 8.049552839071918
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) demonstrate significant persuasive capabilities in one-on-one interactions, but their influence within social networks, where interconnected users and complex opinion dynamics pose unique challenges, remains underexplored. This paper addresses the research question: \emph{Can LLMs generate meaningful content that maximizes user engagement on social networks?} To answer this, we propose a pipeline using reinforcement learning with simulated feedback, where the network's response to LLM-generated content (i.e., the reward) is simulated through a formal engagement model. This approach bypasses the temporal cost and complexity of live experiments, enabling an efficient feedback loop between the LLM and the network under study. It also allows to control over endogenous factors such as the LLM's position within the social network and the distribution of opinions on a given topic. Our approach is adaptive to the opinion distribution of the underlying network and agnostic to the specifics of the engagement model, which is embedded as a plug-and-play component. Such flexibility makes it suitable for more complex engagement tasks and interventions in computational social science. Using our framework, we analyze the performance of LLMs in generating social engagement under different conditions, showcasing their full potential in this task. The experimental code is publicly available at https://github.com/mminici/Engagement-Driven-Content-Generation.
- Abstract(参考訳): 大規模言語モデル(LLM)は1対1のインタラクションにおいて重要な説得力を示すが、相互接続されたユーザと複雑な意見のダイナミクスが固有の課題を呈するソーシャルネットワークにおけるそれらの影響は、まだ未解明のままである。
本稿では,ソーシャルネットワーク上でユーザエンゲージメントを最大化する有意義なコンテンツを生成する<emph{Can LLMs</e>について述べる。
そこで本研究では,LLM生成コンテンツに対するネットワークの応答(報奨)を形式的エンゲージメントモデルを用いてシミュレートする。
このアプローチは、ライブ実験の時間的コストと複雑さを回避し、LLMと研究中のネットワーク間の効率的なフィードバックループを可能にする。
また、ソーシャルネットワークにおけるLLMの位置や、あるトピックに関する意見の分配など、内因的要因を制御できる。
提案手法は,基礎となるネットワークの意見分布に適応し,プラグイン・アンド・プレイコンポーネントとして組み込まれたエンゲージメントモデルの特徴に依存しない。
このような柔軟性は、計算社会科学におけるより複雑なエンゲージメントタスクや介入に適合する。
本研究の枠組みは,異なる条件下でのソーシャルエンゲージメント生成におけるLCMの性能を解析し,その潜在能力を示すものである。
実験コードはhttps://github.com/mminici/Engagement-Driven-Content-Generationで公開されている。
関連論文リスト
- Can LLMs Simulate Social Media Engagement? A Study on Action-Guided Response Generation [51.44040615856536]
本稿では、行動誘導応答生成によるソーシャルメディアのエンゲージメントをシミュレートする大規模言語モデルの能力について分析する。
GPT-4o-mini,O1-mini,DeepSeek-R1をソーシャルメディアエンゲージメントシミュレーションで評価した。
論文 参考訳(メタデータ) (2025-02-17T17:43:08Z) - A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
大規模言語モデル(LLM)は、様々な言語関連タスクで顕著なパフォーマンスを示す。
LLMは、そのコア機能を超えて、創発的な能力を示す。
本稿では,これらの機能を実現する基盤となるコンポーネント,スケーリング機構,アーキテクチャ戦略について検討する。
論文 参考訳(メタデータ) (2025-01-03T21:04:49Z) - Scoring with Large Language Models: A Study on Measuring Empathy of Responses in Dialogues [3.2162648244439684]
本研究では,対話における応答の共感を測り,評価する上で,大規模言語モデルがいかに効果的かを調べるための枠組みを開発する。
我々の戦略は、最新かつ微調整されたLLMの性能を明示的で説明可能な特徴で近似することである。
以上の結果から,組込みのみを用いる場合,ジェネリックLLMに近い性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-12-28T20:37:57Z) - Federated In-Context LLM Agent Learning [3.4757641432843487]
大規模言語モデル(LLM)は、論理的推論、ツールの使用、エージェントとしての外部システムとの相互作用を可能にすることによって、インテリジェントなサービスに革命をもたらした。
本稿では,プライバシ保護型フェデレーション・イン・コンテクスト LLM Agent Learning (FICAL) アルゴリズムを提案する。
その結果、FICALは、他のSOTAベースラインと比較して競争性能が優れており、通信コストの大幅な削減は、$mathbf3.33times105$倍であることがわかった。
論文 参考訳(メタデータ) (2024-12-11T03:00:24Z) - NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews [65.35458530702442]
我々はジャーナリストのインタビューに焦点をあて、コミュニケーションの基盤と豊富なデータに富んだドメインに焦点をあてる。
我々はNPRとCNNから4万人の2人によるインフォメーションインタビューのデータセットをキュレートする。
LLMは、人間のインタビュアーよりも、認識を使い、より高いレベルの質問に目を向ける可能性がはるかに低い。
論文 参考訳(メタデータ) (2024-11-21T01:37:38Z) - Probing Ranking LLMs: Mechanistic Interpretability in Information Retrieval [22.875174888476295]
我々は最先端の微調整型変圧器ネットワークの動作について検討する。
我々のアプローチは、LLM内のニューロンの探索に基づく層間層解析である。
ネットワークのアクティベーションの中で、既知の人間工学的・意味的な特徴の個人またはグループを特定する。
論文 参考訳(メタデータ) (2024-10-24T08:20:10Z) - Generative AI-in-the-loop: Integrating LLMs and GPTs into the Next Generation Networks [11.509880721677156]
大規模言語モデル(LLM)が最近登場し、認知タスクにおけるほぼ人間レベルのパフォーマンスを実証している。
次世代AI-in-the-loop」の概念を提案する。
LLMとMLモデルを組み合わせることで、それぞれの能力を活用し、どちらのモデルよりも優れた結果が得られると考えています。
論文 参考訳(メタデータ) (2024-06-06T17:25:07Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts [10.929547354171723]
本稿では,言語モデルロールアウト(KALM)の知識エージェントを紹介する。
大規模言語モデル(LLM)から、オフラインの強化学習手法によってエージェントが容易に学習できる想像上のロールアウトの形で知識を抽出する。
未確認の目標を持つタスクの実行において46%の成功率を達成し、ベースラインメソッドによって達成された26%の成功率を大幅に上回る。
論文 参考訳(メタデータ) (2024-04-14T13:19:40Z) - Network Formation and Dynamics Among Multi-LLMs [5.8418144988203915]
大規模言語モデル (LLM) は, ネットワーク形成における好みを問うと, 重要なソーシャルネットワークの原則を示す。
また、実世界のネットワークに基づくLCMの意思決定について検討し、三進的閉鎖とホモフィリーが優先的なアタッチメントよりも強い影響があることを明らかにした。
論文 参考訳(メタデータ) (2024-02-16T13:10:14Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Do LLM Agents Exhibit Social Behavior? [5.094340963261968]
State-Understanding-Value-Action (SUVA) は、社会的文脈における応答を体系的に分析するフレームワークである。
最終決定とそれにつながる反応生成プロセスの両方を通じて社会的行動を評価する。
発話に基づく推論がLLMの最終動作を確実に予測できることを実証する。
論文 参考訳(メタデータ) (2023-12-23T08:46:53Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。