Translating Electrocardiograms to Cardiac Magnetic Resonance Imaging Useful for Cardiac Assessment and Disease Screening: A Multi-Center Study AI for ECG to CMR Translation Study
- URL: http://arxiv.org/abs/2411.13602v2
- Date: Thu, 15 May 2025 05:56:38 GMT
- Title: Translating Electrocardiograms to Cardiac Magnetic Resonance Imaging Useful for Cardiac Assessment and Disease Screening: A Multi-Center Study AI for ECG to CMR Translation Study
- Authors: Zhengyao Ding, Ziyu Li, Yujian Hu, Youyao Xu, Chengchen Zhao, Yiheng Mao, Haitao Li, Zhikang Li, Qian Li, Jing Wang, Yue Chen, Mengjia Chen, Longbo Wang, Xuesen Chu, Weichao Pan, Ziyi Liu, Fei Wu, Hongkun Zhang, Ting Chen, Zhengxing Huang,
- Abstract summary: Cardiovascular diseases (CVDs) are the leading cause of global mortality, necessitating accessible and accurate diagnostic tools.<n>We propose CardioNets, a deep learning framework that translates 12-lead ECG signals into CMR-level functional parameters and synthetic images.<n>In a reader study, ECG-only CardioNets achieved 13.9% higher accuracy than human physicians using both ECG and real CMR.
- Score: 30.84196213860778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular diseases (CVDs) are the leading cause of global mortality, necessitating accessible and accurate diagnostic tools. While cardiac magnetic resonance imaging (CMR) provides gold-standard insights into cardiac structure and function, its clinical utility is limited by high cost and complexity. In contrast, electrocardiography (ECG) is inexpensive and widely available but lacks the granularity of CMR. We propose CardioNets, a deep learning framework that translates 12-lead ECG signals into CMR-level functional parameters and synthetic images, enabling scalable cardiac assessment. CardioNets integrates cross-modal contrastive learning and generative pretraining, aligning ECG with CMR-derived cardiac phenotypes and synthesizing high-resolution CMR images via a masked autoregressive model. Trained on 159,819 samples from five cohorts, including the UK Biobank (n=42,483) and MIMIC-IV-ECG (n=164,550), and externally validated on independent clinical datasets (n=3,767), CardioNets achieved strong performance across disease screening and phenotype estimation tasks. In the UK Biobank, it improved cardiac phenotype regression R2 by 24.8% and cardiomyopathy AUC by up to 39.3% over baseline models. In MIMIC, it increased AUC for pulmonary hypertension detection by 5.6%. Generated CMR images showed 36.6% higher SSIM and 8.7% higher PSNR than prior approaches. In a reader study, ECG-only CardioNets achieved 13.9% higher accuracy than human physicians using both ECG and real CMR. These results suggest that CardioNets offers a promising, low-cost alternative to CMR for large-scale CVD screening, particularly in resource-limited settings. Future efforts will focus on clinical deployment and regulatory validation of ECG-based synthetic imaging.
Related papers
- Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG [40.407824759778784]
PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
arXiv Detail & Related papers (2025-06-24T17:19:39Z) - Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications [9.113410118160438]
We present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data.<n>CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data.<n>In the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences.
arXiv Detail & Related papers (2025-05-06T11:06:41Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Estimation of Cardiac and Non-cardiac Diagnosis from Electrocardiogram Features [1.068128849363198]
We use publicly available datasets to investigate the feasibility of inferring general diagnostic conditions from ECG features.
We train a tree-based model (XGBoost) based on ECG features and basic demographic features to estimate a wide range of diagnoses.
arXiv Detail & Related papers (2024-08-30T14:42:03Z) - CNN Based Detection of Cardiovascular Diseases from ECG Images [0.0]
The model was built using the InceptionV3 architecture and optimized through transfer learning.
The developed model successfully detects MI and other cardiovascular conditions with an accuracy of 93.27%.
arXiv Detail & Related papers (2024-08-29T11:26:07Z) - CMRxRecon2024: A Multi-Modality, Multi-View K-Space Dataset Boosting Universal Machine Learning for Accelerated Cardiac MRI [40.11088079783521]
The CMRxRecon2024 dataset is the largest and most protocal-diverse publicly available cardiac k-space dataset.<n>It is acquired from 330 healthy volunteers, covering commonly used modalities, anatomical views, and acquisition trajectories in clinical cardiac MRI.
arXiv Detail & Related papers (2024-06-27T09:50:20Z) - Cardiac Copilot: Automatic Probe Guidance for Echocardiography with World Model [66.35766658717205]
There is a severe shortage of experienced cardiac sonographers, due to the heart's complex structure and significant operational challenges.
We present a Cardiac Copilot system capable of providing real-time probe movement guidance.
The core innovation lies in proposing a data-driven world model, named Cardiac Dreamer, for representing cardiac spatial structures.
We train our model with real-world ultrasound data and corresponding probe motion from 110 routine clinical scans with 151K sample pairs by three certified sonographers.
arXiv Detail & Related papers (2024-06-19T02:42:29Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Unlocking the Diagnostic Potential of ECG through Knowledge Transfer
from Cardiac MRI [6.257859765229826]
We propose the first self-supervised contrastive approach that transfers domain-specific information from CMR images to ECG embeddings.
Our approach combines multimodal contrastive learning with masked data modeling to enable holistic cardiac screening solely from ECG data.
arXiv Detail & Related papers (2023-08-09T10:05:11Z) - Analysis of Digitalized ECG Signals Based on Artificial Intelligence and
Spectral Analysis Methods Specialized in ARVC [0.0]
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that appears between the second and forth decade of a patient's life.
The effective and punctual diagnosis of this disease based on Electrocardiograms (ECGs) could have a vital role in reducing premature cardiovascular mortality.
arXiv Detail & Related papers (2022-02-28T13:12:50Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - A Novel Transfer Learning-Based Approach for Screening Pre-existing
Heart Diseases Using Synchronized ECG Signals and Heart Sounds [0.5621251909851629]
Diagnosing pre-existing heart diseases early in life is important to prevent complications such as pulmonary hypertension, heart rhythm problems, blood clots, heart failure and sudden cardiac arrest.
To identify such diseases, phonocardiogram (PCG) and electrocardiogram (ECG) waveforms convey important information.
Here, we evaluate this hypothesis on a subset of the PhysioNet Challenge 2016 dataset which contains simultaneously acquired PCG and ECG recordings.
Our novel Dual-Convolutional Neural Network based approach uses transfer learning to tackle the problem of having limited amounts of simultaneous PCG and ECG data that is publicly available.
arXiv Detail & Related papers (2021-02-02T19:51:12Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Cardiac Segmentation on Late Gadolinium Enhancement MRI: A Benchmark
Study from Multi-Sequence Cardiac MR Segmentation Challenge [43.01944884184009]
This paper presents the selective results from the Multi-Sequence MR (MS-CMR) challenge, in conjunction with MII 2019.
It was aimed to develop new algorithms, as well as benchmark existing ones for LGE CMR segmentation and compare them objectively.
The success of these methods was mainly attributed to the inclusion of auxiliary sequences from the MS-CMR images.
arXiv Detail & Related papers (2020-06-22T17:04:38Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.