Quantum Friction near the Instability Threshold
- URL: http://arxiv.org/abs/2411.13737v1
- Date: Wed, 20 Nov 2024 22:40:38 GMT
- Title: Quantum Friction near the Instability Threshold
- Authors: Daigo Oue, Boris Shapiro, Mário G. Silveirinha,
- Abstract summary: We show that, near the instability threshold, the quantum friction force diverges logarithmically.
Our findings offer new insights into the role of instabilities, critical divergence and temperature in frictional dynamics across quantum and classical regimes.
- Score: 0.0
- License:
- Abstract: In this work, we develop an analytical framework to understand quantum friction across distinct stability regimes, providing approximate expressions for frictional forces both in the deep stable regime and near the critical threshold of instability. Our primary finding is analytical proof that, near the instability threshold, the quantum friction force diverges logarithmically. This result, verified through numerical simulations, sheds light on the behavior of frictional instabilities as the system approaches criticality. Our findings offer new insights into the role of instabilities, critical divergence and temperature in frictional dynamics across quantum and classical regimes.
Related papers
- Stable-to-unstable transition in quantum friction [0.0]
We investigate the frictional force arising from quantum fluctuations when two dissipative metallic plates are set in a shear motion.
While early studies showed that the electromagnetic fields in the quantum friction setup reach nonequilibrium steady states, other works have demonstrated the failure to attain steady states.
We develop a fully quantum-mechanical theory without perturbative approximations and unveil the transition from stable to unstable regimes.
arXiv Detail & Related papers (2024-02-14T10:34:06Z) - Quantum criticality at the boundary of the non-Hermitian regime of a
Floquet system [4.144331441157407]
We investigate the dynamics of quantum scrambling in a non-Hermitian quantum kicked rotor.
The rates of the linear growth are found to diverge to infinity, indicating the existence of quantum criticality at the boundary of the non-Hermitian regime.
arXiv Detail & Related papers (2023-07-02T03:20:56Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Exact bistability and time pseudo-crystallization of driven-dissipative
fermionic lattices [0.0]
We prove bistability in precisely the quantum fluctuations.
Surprisingly, rather than destroying bistability, the quantum fluctuations themselves exhibit bistability.
Our work provides to the best of our knowledge the first example of a provably bistable quantum optical system.
arXiv Detail & Related papers (2022-02-18T19:00:00Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Hidden Quantum Criticality and Entanglement in Quench Dynamics [0.0]
Entanglement exhibits universal behavior near the ground-state critical point where correlations are long-ranged and the thermodynamic entropy is vanishing.
A quantum quench imparts extensive energy and results in a build-up of entropy, hence no critical behavior is expected at long times.
We show that quantum criticality is hidden in higher-order correlations and becomes manifest via measures such as the mutual information and logarithmic negativity.
arXiv Detail & Related papers (2022-02-09T19:00:00Z) - Robustness of Quantum Systems Subject to Decoherence: Structured
Singular Value Analysis? [0.0]
We study the problem of robust performance of quantum systems under structured uncertainties.
A specific feature of closed (Hamiltonian) quantum systems is that their poles lie on the imaginary axis.
arXiv Detail & Related papers (2021-10-11T16:01:11Z) - Quantum backflow in the presence of a purely transmitting defect [91.3755431537592]
We analyse the quantum backflow effect and extend it, as a limiting constraint to its spatial extent, for scattering situations.
We make the analysis compatible with conservation laws.
arXiv Detail & Related papers (2020-07-14T22:59:25Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.