論文の概要: Persistent Homology for Structural Characterization in Disordered Systems
- arxiv url: http://arxiv.org/abs/2411.14390v5
- Date: Tue, 25 Feb 2025 09:57:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 11:58:48.534355
- Title: Persistent Homology for Structural Characterization in Disordered Systems
- Title(参考訳): 不整合系の構造解析のための永続ホモロジー
- Authors: An Wang, Li Zou,
- Abstract要約: 障害のあるシステムにおける局所的構造と大域的構造の両方を特徴付けるために,永続的ホモロジー(PH)に基づく統一的なフレームワークを提案する。
同じアルゴリズムとデータ構造を使って、ローカルとグローバルのディスクリプタを同時に生成できる。
粒子の再配置を予測し、大域的な位相を分類するのに非常に効果的で解釈可能であることが示されている。
- 参考スコア(独自算出の注目度): 3.3033726268021315
- License:
- Abstract: We propose a unified framework based on persistent homology (PH) to characterize both local and global structures in disordered systems. It can simultaneously generate local and global descriptors using the same algorithm and data structure, and has shown to be highly effective and interpretable in predicting particle rearrangements and classifying global phases. We also demonstrated that using a single variable enables a linear SVM to achieve nearly perfect three-phase classification. Inspired by this discovery, we define a non-parametric metric, the Separation Index (SI), which not only achieves this classification without sacrificing significant performance but also establishes a connection between particle environments and the global phase structure. Our methods provide an effective framework for understanding and analyzing the properties of disordered materials, with broad potential applications in materials science and even wider studies of complex systems.
- Abstract(参考訳): 障害のあるシステムにおける局所的構造と大域的構造の両方を特徴付けるために,永続的ホモロジー(PH)に基づく統一的なフレームワークを提案する。
同一のアルゴリズムとデータ構造を用いて局所的および大域的記述子を同時に生成することができ、粒子配置の予測や大域的位相の分類に非常に効果的で解釈可能であることが示されている。
また、単一変数を用いることで、線形SVMがほぼ完全な3相分類を実現できることを示した。
この発見にインスパイアされた非パラメトリック計量である分離指数(SI)を定義し、これは重要な性能を犠牲にすることなくこの分類を達成できるだけでなく、粒子環境と大域的な位相構造との接続も確立する。
本手法は, 乱れた材料の性質の理解と解析に有効な枠組みを提供し, 材料科学や複雑なシステムのより広範な研究に広く応用できる可能性がある。
関連論文リスト
- Unraveling the Localized Latents: Learning Stratified Manifold Structures in LLM Embedding Space with Sparse Mixture-of-Experts [3.9426000822656224]
大規模な言語モデルでは、埋め込みは入力データの難易度や領域によって異なる次元の局所多様体構造に存在していると推測する。
注意に基づくソフトゲーティングネットワークを組み込むことで,我々のモデルは入力データソースのアンサンブルのために,特別なサブマニフォールドを学習することを確認した。
論文 参考訳(メタデータ) (2025-02-19T09:33:16Z) - Scalable manifold learning by uniform landmark sampling and constrained
locally linear embedding [0.6144680854063939]
本研究では,大規模・高次元データを効率的に操作できるスケーラブルな多様体学習法を提案する。
異なるタイプの合成データセットと実世界のベンチマークにおけるSCMLの有効性を実証的に検証した。
scMLはデータサイズや埋め込み次元の増大とともにスケールし、グローバル構造を保存する上で有望なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-01-02T08:43:06Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
局所・グローバル構造保存を用いた効率的なマルチビューグラフクラスタリング(EMVGC-LG)という,アンカーベースのマルチビューグラフクラスタリングフレームワークを提案する。
具体的には、EMVGC-LGがクラスタリング品質を向上させるために、アンカー構築とグラフ学習を共同で最適化する。
さらに、EMVGC-LGはサンプル数に関する既存のAMVGCメソッドの線形複雑性を継承する。
論文 参考訳(メタデータ) (2023-08-31T12:12:30Z) - Exploring The Potential Of GANs In Biological Sequence Analysis [0.966840768820136]
本稿では,GAN(Generative Adversarial Networks)に基づくデータ不均衡問題に対する新しいアプローチを提案する。
GANは、実際のデータとよく似た合成データを生成するために利用される。
3つの異なるシーケンスデータセットを用いて3つの異なる分類タスクを実行する。
論文 参考訳(メタデータ) (2023-03-04T13:46:45Z) - Feature construction using explanations of individual predictions [0.0]
本稿では,予測モデルのインスタンスベース説明の集約に基づく探索空間の削減手法を提案する。
これらのグループに対する探索の削減が特徴構築の時間を大幅に短縮することを実証的に示す。
いくつかの分類器の分類精度を大幅に向上させ,大規模データセットにおいても提案する特徴構築の実現可能性を示した。
論文 参考訳(メタデータ) (2023-01-23T18:59:01Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Structure-Aware Feature Generation for Zero-Shot Learning [108.76968151682621]
潜在空間と生成ネットワークの両方を学習する際の位相構造を考慮し,SA-GANと呼ばれる新しい構造認識特徴生成手法を提案する。
本手法は,未確認クラスの一般化能力を大幅に向上させ,分類性能を向上させる。
論文 参考訳(メタデータ) (2021-08-16T11:52:08Z) - Spatio-Temporal Representation Factorization for Video-based Person
Re-Identification [55.01276167336187]
本稿では、re-IDのための時空間表現分解モジュール(STRF)を提案する。
STRFはフレキシブルな新しい計算ユニットであり、re-IDのための既存のほとんどの3D畳み込みニューラルネットワークアーキテクチャと併用することができる。
実験により、STRFは様々なベースラインアーキテクチャの性能を向上し、新しい最先端の成果を示す。
論文 参考訳(メタデータ) (2021-07-25T19:29:37Z) - Unveiling the Potential of Structure-Preserving for Weakly Supervised
Object Localization [71.79436685992128]
本稿では,WSOLの畳み込み機能に組み込まれた構造情報を完全に活用するための2段階構造保存アクティベーション(SPA)を提案する。
第1段階では、分類ネットワークによって引き起こされる構造ミス問題を軽減するために制限アクティベーションモジュール(ram)が設計されている。
第2段階では, 自己相関マップ生成(SCG)モジュールと呼ばれるプロセス後アプローチを提案し, 構造保存ローカライゼーションマップを得る。
論文 参考訳(メタデータ) (2021-03-08T03:04:14Z) - Joint Characterization of Multiscale Information in High Dimensional
Data [0.0]
グローバルアプローチとローカルアプローチの相乗効果を生かした多スケール共同評価手法を提案します。
関節の特徴は, PCA や t-sne のいずれからも明らかでない信号の検出と分離が可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T23:33:00Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。