論文の概要: Creating Scalable AGI: the Open General Intelligence Framework
- arxiv url: http://arxiv.org/abs/2411.15832v1
- Date: Sun, 24 Nov 2024 13:17:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:21:33.281380
- Title: Creating Scalable AGI: the Open General Intelligence Framework
- Title(参考訳): スケーラブルなAGIの作成 - Open General Intelligence Framework
- Authors: Daniel A. Dollinger, Michael Singleton,
- Abstract要約: アーキテクチャであるOGI(Open General Intelligence)は、動的処理システムを使用して、専門の人工知能モジュールをまたいだ制御とデリゲートを行う。
インテリジェントシステムのリファレンス設計として使用することを目的としており、さまざまな現実世界のアプリケーションにまたがる汎用人工知能に対して、人間のような認知的柔軟性を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper introduces a novel general artificial intelligence systems architecture that provides generalized flexibility and solves current scalability issues plaguing the field. The architecture, OGI (Open General Intelligence), utilizes a dynamic processing system to control and delegate across specialized artificial intelligence modules. It is intended to be used as a reference design for intelligent systems, providing human-like cognitive flexibility for generalized artificial intelligence across various real-world applications.
- Abstract(参考訳): 本稿では、汎用的な柔軟性を提供する新しい汎用人工知能システムアーキテクチャを導入し、現場を悩ませている現在のスケーラビリティ問題を解決する。
アーキテクチャであるOGI(Open General Intelligence)は、動的処理システムを使用して、専門の人工知能モジュールをまたいだ制御とデリゲートを行う。
インテリジェントシステムのリファレンス設計として使用することを目的としており、さまざまな現実世界のアプリケーションにまたがる汎用人工知能に対して、人間のような認知的柔軟性を提供する。
関連論文リスト
- Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
デジタルツイン(DT)のようなサービスをサポートする将来の無線システムの構築は、メタサーフェスのような従来の技術への進歩を通じて達成することが困難である。
人工知能(AI)ネイティブネットワークは、無線技術のいくつかの制限を克服することを約束する一方で、開発は依然としてニューラルネットワークのようなAIツールに依存している。
本稿では、AIネイティブ無線システムの概念を再考し、それらを人工知能(AGI)ネイティブシステムに変換するために必要な共通感覚を取り入れた。
論文 参考訳(メタデータ) (2024-04-29T04:51:05Z) - Towards a general framework for improving the performance of classifiers using XAI methods [0.0]
本稿では,XAI手法を用いた事前学習型ディープラーニング(DL)分類器の性能向上のためのフレームワークを提案する。
オートエンコーダベースおよびエンコーダデコーダベースと呼び、それらの重要な側面について議論する。
論文 参考訳(メタデータ) (2024-03-15T15:04:20Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
エッジ人工知能(Edge AI)は、コネクテッドインテリジェンスを実現するための有望なソリューションである。
この記事では、ユーザのさまざまな要件を満たすために自動的に組織化し、適応し、最適化する、自律的なエッジAIシステムのビジョンを示す。
論文 参考訳(メタデータ) (2023-07-06T05:16:55Z) - A Graphical Modeling Language for Artificial Intelligence Applications
in Automation Systems [69.50862982117127]
学際的なグラフィカルモデリング言語で、すべての分野に理解可能なシステムとして、AIアプリケーションのモデリングを可能にすることは、まだ存在しない。
本稿では,システムレベルでの自動化システムにおけるAIアプリケーションの一貫した,理解可能なモデリングを可能にするグラフィカルモデリング言語を提案する。
論文 参考訳(メタデータ) (2023-06-20T12:06:41Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - Core and Periphery as Closed-System Precepts for Engineering General
Intelligence [62.997667081978825]
AIシステムの入力が出力から独立するかどうかは不明であり、従ってAIシステムが従来のコンポーネントとして扱われるかどうかは不明である。
本稿では, 工学的汎用知能は, コアと周辺と呼ばれる, 新たな汎用システム規範を必要とすることを示唆する。
論文 参考訳(メタデータ) (2022-08-04T18:20:25Z) - Designing an AI-Driven Talent Intelligence Solution: Exploring Big Data
to extend the TOE Framework [0.0]
本研究の目的は、人材管理問題に対処するAI指向のアーティファクトを開発するための新しい要件を特定することである。
構造化機械学習技術を用いて実験的な研究を行うための設計科学手法が採用されている。
論文 参考訳(メタデータ) (2022-07-25T10:42:50Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
巨大な言語モデル(LM)は、自然言語ベースの知識タスクのゲートウェイとして機能する、AIの新しい時代を支えている。
離散的な知識と推論モジュールによって補完される、複数のニューラルモデルによる柔軟なアーキテクチャを定義する。
本稿では,MRKL(Modular Reasoning, Knowledge and Language)システムと呼ばれる,このニューロシンボリックアーキテクチャについて述べる。
論文 参考訳(メタデータ) (2022-05-01T11:01:28Z) - The Why, What and How of Artificial General Intelligence Chip
Development [0.0]
インテリジェントなセンシング、自動化、エッジコンピューティングアプリケーションは、AIチップの市場ドライバとなっている。
AIチップソリューションの一般化、パフォーマンス、堅牢性、スケーラビリティは、人間のような知能能力と比較される。
論文 参考訳(メタデータ) (2020-12-08T02:36:04Z) - AI from concrete to abstract: demystifying artificial intelligence to
the general public [0.0]
本稿では,コンクリートから抽象的(AIcon2abs)への新たな方法論,AIについて述べる。
主な戦略は、人工知能のデミスティフィケーションを促進することである。
WiSARDの軽量化により、トレーニングタスクと分類タスクの視覚化と理解が容易になる。
論文 参考訳(メタデータ) (2020-06-07T01:14:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。