論文の概要: Graph Neural Networks-based Parameter Design towards Large-Scale Superconducting Quantum Circuits for Crosstalk Mitigation
- arxiv url: http://arxiv.org/abs/2411.16354v1
- Date: Mon, 25 Nov 2024 13:04:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:23:27.095523
- Title: Graph Neural Networks-based Parameter Design towards Large-Scale Superconducting Quantum Circuits for Crosstalk Mitigation
- Title(参考訳): グラフニューラルネットワークを用いたクロストーク除去のための大規模超伝導量子回路のパラメータ設計
- Authors: Hao Ai, Yu-xi Liu,
- Abstract要約: 量子システムのシミュレーションの複雑さは、量子チップのコンピュータ支援設計に重大な課題をもたらす。
本稿では,大規模超伝導量子回路のパラメータ設計アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.6442870218029524
- License:
- Abstract: To demonstrate supremacy of quantum computing, increasingly large-scale superconducting quantum computing chips are being designed and fabricated, sparking the demand for electronic design automation in pursuit of better efficiency and effectiveness. However, the complexity of simulating quantum systems poses a significant challenge to computer-aided design of quantum chips. Harnessing the scalability of graph neural networks (GNNs), we here propose a parameter designing algorithm for large-scale superconducting quantum circuits. The algorithm depends on the so-called 'three-stair scaling' mechanism, which comprises two neural-network models: an evaluator supervisedly trained on small-scale circuits for applying to medium-scale circuits, and a designer unsupervisedly trained on medium-scale circuits for applying to large-scale ones. We demonstrate our algorithm in mitigating quantum crosstalk errors, which are commonly present and closely related to the graph structures and parameter assignments of superconducting quantum circuits. Parameters for both single- and two-qubit gates are considered simultaneously. Numerical results indicate that the well-trained designer achieves notable advantages not only in efficiency but also in effectiveness, especially for large-scale circuits. For example, in superconducting quantum circuits consisting of around 870 qubits, the trained designer requires only 27 seconds to complete the frequency designing task which necessitates 90 minutes for the traditional Snake algorithm. More importantly, the crosstalk errors using our algorithm are only 51% of those produced by the Snake algorithm. Overall, this study initially demonstrates the advantages of applying graph neural networks to design parameters in quantum processors, and provides insights for systems where large-scale numerical simulations are challenging in electronic design automation.
- Abstract(参考訳): 量子コンピューティングの優位性を示すため、より大規模な超伝導量子コンピューティングチップの設計と製造が行われており、効率と効率性の向上を追求する電子設計自動化の需要が高まっている。
しかし、量子システムのシミュレーションの複雑さは、量子チップのコンピュータ支援設計に重大な課題をもたらす。
本稿では,グラフニューラルネットワーク(GNN)のスケーラビリティを考慮し,大規模超伝導量子回路のパラメータ設計アルゴリズムを提案する。
このアルゴリズムはいわゆる「3段スケーリング」機構に依存しており、2つのニューラルネットモデル(中規模回路に適用するための小規模回路で教師あり訓練された評価器)と、大規模回路に適用するための中規模回路で教師なし訓練されたデザイナーである。
超伝導量子回路のグラフ構造やパラメータ割り当てと密接に関連している量子クロストーク誤差を緩和するアルゴリズムを実証する。
シングルビットゲートと2ビットゲートの両方のパラメータを同時に考慮する。
数値的な結果から, 優れた設計者は, 効率だけでなく, 特に大規模回路において, 顕著な利点を享受できることが示唆された。
例えば、約870量子ビットからなる超伝導量子回路では、伝統的なスネークアルゴリズムに90分を要する周波数設計タスクを完了するのに27秒しか必要としない。
さらに,本アルゴリズムを用いたクロストーク誤差は,Snakeアルゴリズムが生成した誤差の51%に過ぎなかった。
本研究は、まず、量子プロセッサのパラメータ設計にグラフニューラルネットワークを適用する利点を実証し、電子設計自動化において大規模数値シミュレーションが困難であるシステムに対する洞察を提供する。
関連論文リスト
- QCircuitNet: A Large-Scale Hierarchical Dataset for Quantum Algorithm Design [17.747641494506087]
量子アルゴリズムの設計と実装におけるAIの能力を評価するために設計された、最初のベンチマークおよびテストデータセットであるQCircuitNetを紹介する。
従来のコードの記述にAIを使用するのとは異なり、このタスクは基本的に異なり、非常に柔軟な設計空間と複雑なキュービット操作のため、さらに複雑である。
論文 参考訳(メタデータ) (2024-10-10T14:24:30Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Distributed Quantum Neural Networks via Partitioned Features Encoding [0.0]
量子ニューラルネットワークは、短期量子コンピューティングにおける有望な応用であると期待されている。
本稿では,複数の小回路を用いて大回路の出力を近似して予測する。
提案手法は,大規模データセットの高精度な予測だけでなく,各量子ニューラルネットワークのハードウェア要件も低減した。
論文 参考訳(メタデータ) (2023-12-21T08:21:44Z) - GSQAS: Graph Self-supervised Quantum Architecture Search [0.18899300124593643]
既存の量子アーキテクチャ探索(QAS)アルゴリズムは、探索プロセス中に多数の量子回路を評価する必要がある。
本稿では,自己教師型学習に基づく予測器を訓練するグラフ自己教師型QASであるGSQASを提案する。
GSQASは最先端の予測器ベースのQASより優れており、ラベル付き回路が少なくて性能が良い。
論文 参考訳(メタデータ) (2023-03-22T08:35:28Z) - Realization of a quantum neural network using repeat-until-success
circuits in a superconducting quantum processor [0.0]
本稿では、リアルタイム制御-フローフィードバックによって実現されたリピート・アンティル・サクセス回路を用いて、非線形活性化機能を持つ量子ニューロンを実現する。
例えば、2ビットから1ビットのブール関数をすべて学習できる最小限のフィードフォワード量子ニューラルネットワークを構築する。
このモデルは非線形分類を行い、全ての入力の最大重ね合わせからなる単一のトレーニング状態の複数のコピーから効果的に学習する。
論文 参考訳(メタデータ) (2022-12-21T03:26:32Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
我々の量子シンセサイザーの目的は、ユーザーが高レベルなコマンドを使って量子アルゴリズムを実装できるようにすることである。
量子アルゴリズムを実装するための提案手法は、機械学習の分野で潜在的に有効である。
論文 参考訳(メタデータ) (2022-09-20T06:25:47Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。