論文の概要: Embedding of Tree Tensor Networks into Shallow Quantum Circuits
- arxiv url: http://arxiv.org/abs/2501.18856v1
- Date: Fri, 31 Jan 2025 02:38:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:01:34.647464
- Title: Embedding of Tree Tensor Networks into Shallow Quantum Circuits
- Title(参考訳): 木テンソルネットワークの浅量子回路への埋め込み
- Authors: Shota Sugawara, Kazuki Inomata, Tsuyoshi Okubo, Synge Todo,
- Abstract要約: 本研究では,木ネットワーク(TTN)を浅い量子回路に埋め込む手法を提案する。
我々の数値的な結果は、TTNの埋め込みは、マトリックス生成状態(MPS)よりも優れた初期量子回路を提供することを示している。
この研究は、VQAの2次元システムと長距離相関系への応用を拡大することが期待されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Variational Quantum Algorithms (VQAs) are being highlighted as key quantum algorithms for demonstrating quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) devices, which are limited to executing shallow quantum circuits because of noise. However, the barren plateau problem, where the gradient of the loss function becomes exponentially small with system size, hinders this goal. Recent studies suggest that embedding tensor networks into quantum circuits and initializing the parameters can avoid the barren plateau. Yet, embedding tensor networks into quantum circuits is generally difficult, and methods have been limited to the simplest structure, Matrix Product States (MPSs). This study proposes a method to embed Tree Tensor Networks (TTNs), characterized by their hierarchical structure, into shallow quantum circuits. TTNs are suitable for representing two-dimensional systems and systems with long-range correlations, which MPSs are inadequate for representing. Our numerical results show that embedding TTNs provides better initial quantum circuits than MPS. Additionally, our method has a practical computational complexity, making it applicable to a wide range of TTNs. This study is expected to extend the application of VQAs to two-dimensional systems and those with long-range correlations, which have been challenging to utilize.
- Abstract(参考訳): 変分量子アルゴリズム(VQA)はノイズのため浅い量子回路の実行に制限されるノイズ中間量子(NISQ)デバイス上で量子優位を示す重要な量子アルゴリズムとして強調されている。
しかし、損失関数の勾配がシステムサイズとともに指数関数的に小さくなる不毛高原問題は、この目標を妨げている。
近年の研究では、量子回路にテンソルネットワークを埋め込んでパラメータを初期化することで、バレンプラトーを避けることができることが示唆されている。
しかし、テンソルネットワークを量子回路に埋め込むことは一般的に困難であり、手法は最も単純な構造であるマトリックス生成状態(MPS)に限られている。
本研究では,その階層構造を特徴とするツリーテンソルネットワーク(TTN)を浅い量子回路に埋め込む手法を提案する。
TTNは、MPSが表現に不適な長距離相関を持つ2次元システムやシステムを表現するのに適している。
数値計算の結果,TTNの埋め込みはMPSよりも優れた初期量子回路を提供することがわかった。
さらに,本手法は計算量が多く,広い範囲のTTNに適用可能である。
本研究は, VQAの2次元システムへの応用と, 利用が困難であった長距離相関系への拡張を期待する。
関連論文リスト
- Scalable Parameter Design for Superconducting Quantum Circuits with Graph Neural Networks [1.6442870218029524]
量子システムのシミュレーションの複雑さは、量子チップのコンピュータ支援設計に挑戦する。
本稿では,大規模超伝導量子回路のパラメータ設計アルゴリズムを提案する。
提案アルゴリズムは,効率,有効性,拡張性において顕著な優位性を実現する。
論文 参考訳(メタデータ) (2024-11-25T13:04:53Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
現在の中間スケール量子(NISQ)デバイスはその能力に制限がある。
本稿では,パラメータ化ネットワーク(TN)を用いて,変分量子固有解法(VQE)アルゴリズムの性能改善を試みる。
論文 参考訳(メタデータ) (2024-02-19T12:53:52Z) - Calibrating the role of entanglement in variational quantum circuits [0.6435156676256051]
エンタングルメント(Entanglement)は、量子コンピューティングの重要な性質であり、古典的なものとは分離している。
2つの変分量子アルゴリズムの動作における絡み合いの役割を系統的に検討する。
QAOAを用いて解いたMAX-CUT問題に対して,絡み合い関数としての忠実度は層数に大きく依存することがわかった。
QNNの場合、高いテスト精度のトレーニング回路は高い絡み合いによって支えられ、強制的な絡み合いの制限はテスト精度の急激な低下をもたらす。
論文 参考訳(メタデータ) (2023-10-16T23:36:40Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
量子ニューラルネットワークは、ユニタリ演算、測定、フィードフォワードの約束を組み合わせることで、量子状態の特定の特徴を認識するように調整され、少ない測定とエラーを許容する。
我々は、7量子ビット超伝導量子プロセッサ上で量子畳み込みニューラルネットワーク(QCNN)を実現し、非ゼロ弦順序パラメータを特徴とするスピンモデルの対称性保護位相を同定する。
その結果,QCNNは有限忠実ゲート自体で構成されているにもかかわらず,用意された状態に対する弦順パラメータの直接測定よりも位相位相を高い忠実度で認識していることがわかった。
論文 参考訳(メタデータ) (2021-09-13T12:32:57Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。