論文の概要: Connections between sequential Bayesian inference and evolutionary dynamics
- arxiv url: http://arxiv.org/abs/2411.16366v1
- Date: Mon, 25 Nov 2024 13:20:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:20.594775
- Title: Connections between sequential Bayesian inference and evolutionary dynamics
- Title(参考訳): 逐次ベイズ推論と進化力学の関連
- Authors: Sahani Pathiraja, Philipp Wacker,
- Abstract要約: 生物学における進化過程を記述する力学方程式とシーケンシャルベイズ学習法の間には、長い間関係があると仮定されてきた。
この写本は、この正確な関係を連続的に厳密に確立した新たな研究を記述している。
- 参考スコア(独自算出の注目度): 3.2228025627337864
- License:
- Abstract: It has long been posited that there is a connection between the dynamical equations describing evolutionary processes in biology and sequential Bayesian learning methods. This manuscript describes new research in which this precise connection is rigorously established in the continuous time setting. Here we focus on a partial differential equation known as the Kushner-Stratonovich equation describing the evolution of the posterior density in time. Of particular importance is a piecewise smooth approximation of the observation path from which the discrete time filtering equations, which are shown to converge to a Stratonovich interpretation of the Kushner-Stratonovich equation. This smooth formulation will then be used to draw precise connections between nonlinear stochastic filtering and replicator-mutator dynamics. Additionally, gradient flow formulations will be investigated as well as a form of replicator-mutator dynamics which is shown to be beneficial for the misspecified model filtering problem. It is hoped this work will spur further research into exchanges between sequential learning and evolutionary biology and to inspire new algorithms in filtering and sampling.
- Abstract(参考訳): 生物学における進化過程を記述する力学方程式とシーケンシャルベイズ学習法の間には、長い間関係があると仮定されてきた。
この写本は、この正確な関係を連続的に厳密に確立した新たな研究を記述している。
ここでは、時間における後続密度の進化を記述するクシュナー・ストラットノヴィッチ方程式として知られる偏微分方程式に焦点を当てる。
特に重要なのは、離散時間フィルタリング方程式がクシュナー・ストラトノヴィッチ方程式のストラトノビッチ解釈に収束することを示す観察経路の断片的に滑らかな近似である。
この滑らかな定式化は、非線形確率フィルタリングとレプリケータ・ミュータダイナミクスの間の正確な接続を引き出すために使われる。
さらに、勾配流の定式化や、不特定モデルのフィルタリング問題に有用であることが示されているレプリカータ・ミューテータの力学の形式についても検討する。
この研究は、シーケンシャルラーニングと進化生物学の交換に関するさらなる研究を刺激し、新しいアルゴリズムをフィルタリングとサンプリングに駆り立てることが期待されている。
関連論文リスト
- Equation-informed data-driven identification of flow budgets and dynamics [0.0]
本稿では,フロークラスタリングのための新しいハイブリッド手法を提案する。
それは、方程式に基づく特徴を持つシステムの各サンプルポイントを特徴づけることから成り立っている。
このアルゴリズムは、EulerianフレームワークとLagrangianフレームワークの両方で実装されている。
論文 参考訳(メタデータ) (2024-11-14T15:59:41Z) - On Learning Gaussian Multi-index Models with Gradient Flow [57.170617397894404]
高次元ガウスデータに対する多次元回帰問題の勾配流について検討する。
低階射影をパラメトリする部分空間よりも、非パラメトリックモデルで低次元リンク関数を無限に高速に学習する2時間スケールのアルゴリズムを考える。
論文 参考訳(メタデータ) (2023-10-30T17:55:28Z) - Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back [84.61160272624262]
この畳み込み操作に基づいて,タンジェントバンドルフィルタとタンジェントバンドルニューラルネットワーク(TNN)を定義する。
タンジェントバンドルフィルタは、スカラー多様体フィルタ、グラフフィルタ、標準畳み込みフィルタを連続的に一般化するスペクトル表現を許容する。
提案したアーキテクチャが様々な学習課題に与える影響を数値的に評価する。
論文 参考訳(メタデータ) (2023-03-20T17:57:15Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Deep Learning for the Benes Filter [91.3755431537592]
本研究では,メッシュのないニューラルネットワークによるベンズモデルの解の密度の表現に基づく新しい数値計算法を提案する。
ニューラルネットワークの領域選択におけるフィルタリングモデル方程式における非線形性の役割について論じる。
論文 参考訳(メタデータ) (2022-03-09T14:08:38Z) - Model discovery in the sparse sampling regime [0.0]
深層学習が部分微分方程式のモデル発見をいかに改善できるかを示す。
その結果、ディープラーニングに基づくモデル発見は、基礎となる方程式を復元することができる。
我々は合成集合と実験集合の両方について主張する。
論文 参考訳(メタデータ) (2021-05-02T06:27:05Z) - Implicit Regularization via Neural Feature Alignment [39.257382575749354]
ニューラル・タンジェントの特徴の動的アライメントによって引き起こされる正規化効果を強調した。
線形モデルに対するラデマッハ複雑性境界の新しい解析を外挿することにより、この現象を捉える複雑性尺度を動機付け、研究する。
論文 参考訳(メタデータ) (2020-08-03T15:18:07Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Combining data assimilation and machine learning to emulate a dynamical
model from sparse and noisy observations: a case study with the Lorenz 96
model [0.0]
この方法は、アンサンブルカルマンフィルタとニューラルネットワークを反復的にデータ同化ステップで適用することで構成される。
データ同化は、代理モデルとスパースデータとを最適に組み合わせるために用いられる。
出力分析は空間的に完全であり、サロゲートモデルを更新するためのニューラルネットワークによるトレーニングセットとして使用される。
カオス的な40変数Lorenz 96モデルを用いて数値実験を行い、提案手法の収束と統計的スキルの両立を証明した。
論文 参考訳(メタデータ) (2020-01-06T12:26:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。