論文の概要: Evaluating Generative AI-Enhanced Content: A Conceptual Framework Using Qualitative, Quantitative, and Mixed-Methods Approaches
- arxiv url: http://arxiv.org/abs/2411.17943v1
- Date: Tue, 26 Nov 2024 23:34:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:28:33.406139
- Title: Evaluating Generative AI-Enhanced Content: A Conceptual Framework Using Qualitative, Quantitative, and Mixed-Methods Approaches
- Title(参考訳): 生成的AI強化コンテンツの評価:質的,定量的,混合的アプローチを用いた概念的フレームワーク
- Authors: Saman Sarraf,
- Abstract要約: Generative AI(GenAI)は、コンテント生成に革命をもたらし、言語コヒーレンス、可読性、全体的な品質を改善するためのトランスフォーメーション機能を提供する。
本論文は,GenAIモデルの性能評価のための定性的,定量的,混合方法論の研究アプローチの応用を探求する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Generative AI (GenAI) has revolutionized content generation, offering transformative capabilities for improving language coherence, readability, and overall quality. This manuscript explores the application of qualitative, quantitative, and mixed-methods research approaches to evaluate the performance of GenAI models in enhancing scientific writing. Using a hypothetical use case involving a collaborative medical imaging manuscript, we demonstrate how each method provides unique insights into the impact of GenAI. Qualitative methods gather in-depth feedback from expert reviewers, analyzing their responses using thematic analysis tools to capture nuanced improvements and identify limitations. Quantitative approaches employ automated metrics such as BLEU, ROUGE, and readability scores, as well as user surveys, to objectively measure improvements in coherence, fluency, and structure. Mixed-methods research integrates these strengths, combining statistical evaluations with detailed qualitative insights to provide a comprehensive assessment. These research methods enable quantifying improvement levels in GenAI-generated content, addressing critical aspects of linguistic quality and technical accuracy. They also offer a robust framework for benchmarking GenAI tools against traditional editing processes, ensuring the reliability and effectiveness of these technologies. By leveraging these methodologies, researchers can evaluate the performance boost driven by GenAI, refine its applications, and guide its responsible adoption in high-stakes domains like healthcare and scientific research. This work underscores the importance of rigorous evaluation frameworks for advancing trust and innovation in GenAI.
- Abstract(参考訳): Generative AI(GenAI)は、コンテント生成に革命をもたらし、言語コヒーレンス、可読性、全体的な品質を改善するためのトランスフォーメーション機能を提供する。
本論文は,GenAIモデルの性能評価のための定性的,定量的,混合方法論の研究アプローチの応用を探求する。
共同医用画像原稿を用いた仮説的ユースケースを用いて, それぞれの手法がGenAIの影響について独自の洞察を与える様子を実証する。
質的な方法は専門家のレビュアーから詳細なフィードバックを集め、テーマ分析ツールを使って回答を分析し、微妙な改善を捉え、制限を識別する。
定量的アプローチでは、BLEU、ROUGE、可読性スコアなどの自動メトリクスとユーザサーベイを使用して、コヒーレンス、フラレンシ、構造の改善を客観的に測定する。
混合メソドス研究はこれらの強みを統合し、統計的評価と詳細な質的な洞察を組み合わせて総合的な評価を提供する。
これらの研究手法により、GenAI生成コンテンツの改善レベルを定量化し、言語的品質と技術的正確性の重要な側面に対処することができる。
また、従来の編集プロセスに対してGenAIツールをベンチマークするための堅牢なフレームワークを提供し、これらの技術の信頼性と有効性を保証する。
これらの手法を活用することで、研究者はGenAIが推進するパフォーマンスの向上を評価し、その応用を洗練させ、医療や科学研究のような高度な領域における責任ある採用を導くことができる。
この研究は、GenAIの信頼と革新を促進するための厳格な評価フレームワークの重要性を浮き彫りにしている。
関連論文リスト
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Position: Evaluating Generative AI Systems is a Social Science Measurement Challenge [78.35388859345056]
我々は,MLコミュニティが,GenAIシステム評価のための計測機器を開発する際に,社会科学の学習と図面の恩恵を受けることを論じる。
我々は,GenAIの能力,行動,および影響に関する概念を測定するための,社会科学からの計測理論に基づく4段階の枠組みを提案する。
論文 参考訳(メタデータ) (2025-02-01T21:09:51Z) - KRAIL: A Knowledge-Driven Framework for Base Human Reliability Analysis Integrating IDHEAS and Large Language Models [2.7378790256389047]
本稿では,IDHEASとLLM(KRAIL)を統合した知識駆動型信頼性分析のための新しい2段階フレームワークを提案する。
本稿では,自然言語処理における大規模言語モデル(LLM)の成功に触発されて,知識駆動型信頼性分析のための新しい2段階フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-20T06:21:34Z) - A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications [2.0681376988193843]
AIモデルの特徴である"ブラックボックス"は、解釈可能性、透明性、信頼性を制約する。
本研究では,AIモデルによる説明の正確性,解釈可能性,堅牢性,公正性,完全性を評価するための統合XAI評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-05T05:30:10Z) - Dimensions of Generative AI Evaluation Design [51.541816010127256]
我々は、GenAI評価設計に関わる重要な選択を捉えるための一般的な次元のセットを提案する。
これらの次元には、評価設定、タスクタイプ、入力ソース、インタラクションスタイル、期間、メトリックタイプ、スコアリング方法が含まれる。
論文 参考訳(メタデータ) (2024-11-19T18:25:30Z) - Generative AI Tools in Academic Research: Applications and Implications for Qualitative and Quantitative Research Methodologies [0.0]
本研究では,生成人工知能(GenAI)が学術研究に与える影響について検討し,質的・定量的データ分析への応用に焦点をあてる。
GenAIツールは急速に進化し、研究の生産性を高め、複雑な分析プロセスを民主化するための新たな可能性を提供する。
学術的実践への統合は、研究の完全性、セキュリティ、著作家精神、そして学術作品の変化する性質に関する重要な疑問を提起する。
論文 参考訳(メタデータ) (2024-08-13T13:10:03Z) - Human-AI Collaboration in Thematic Analysis using ChatGPT: A User Study
and Design Recommendations [0.0]
生成人工知能(GenAI)は、定性的研究において、人間とAIのコラボレーションを前進させる有望な可能性を提供する。
この研究は、GenAI、特にChatGPTとのコラボレーションに対する研究者の認識を掘り下げている。
論文 参考訳(メタデータ) (2023-11-07T13:54:56Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
本稿では,静的評価手法から適応テストへのパラダイムシフトについて論じる。
これには、ベンチマークで各テスト項目の特性と価値を推定し、リアルタイムでアイテムを動的に調整することが含まれる。
我々は、AI評価にサイコメトリックを採用する現在のアプローチ、アドバンテージ、そして根底にある理由を分析します。
論文 参考訳(メタデータ) (2023-06-18T09:54:33Z) - The Meta-Evaluation Problem in Explainable AI: Identifying Reliable
Estimators with MetaQuantus [10.135749005469686]
説明可能なAI(XAI)分野における未解決課題の1つは、説明方法の品質を最も確実に見積もる方法を決定することである。
我々は、XAIの異なる品質推定器のメタ評価を通じてこの問題に対処する。
我々の新しいフレームワークMetaQuantusは、品質推定器の2つの相補的な性能特性を解析する。
論文 参考訳(メタデータ) (2023-02-14T18:59:02Z) - Faithfulness in Natural Language Generation: A Systematic Survey of
Analysis, Evaluation and Optimization Methods [48.47413103662829]
自然言語生成(NLG)は,事前学習型言語モデルなどの深層学習技術の発展により,近年大きく進歩している。
しかし、生成したテキストが通常不信または非実情報を含むという忠実性問題は、最大の課題となっている。
論文 参考訳(メタデータ) (2022-03-10T08:28:32Z) - Image Quality Assessment in the Modern Age [53.19271326110551]
本チュートリアルは、画像品質評価(IQA)の基礎的理論、方法論、現状の進歩を聴衆に提供する。
まず,視覚刺激を適切に選択する方法に着目し,主観的品質評価手法を再考する。
手書きのエンジニアリングと(深い)学習ベースの手法の両方をカバーします。
論文 参考訳(メタデータ) (2021-10-19T02:38:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。