論文の概要: Engineering Trustworthy Software: A Mission for LLMs
- arxiv url: http://arxiv.org/abs/2411.17981v1
- Date: Wed, 27 Nov 2024 01:30:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:27:53.743154
- Title: Engineering Trustworthy Software: A Mission for LLMs
- Title(参考訳): エンジニアリングの信頼できるソフトウェア - LLMのミッション
- Authors: Marco Vieira,
- Abstract要約: LLMは、開発を加速し、複雑さを減らし、コストを削減することで、ソフトウェアエンジニアリングを変革している。
初期のバグ検出、継続的改善、重要な問題の迅速な解決を容易にしながら、設計、開発、デプロイメントを推進します。
- 参考スコア(独自算出の注目度): 1.0878040851638
- License:
- Abstract: LLMs are transforming software engineering by accelerating development, reducing complexity, and cutting costs. When fully integrated into the software lifecycle they will drive design, development and deployment while facilitating early bug detection, continuous improvement, and rapid resolution of critical issues. However, trustworthy LLM-driven software engineering requires addressing multiple challenges such as accuracy, scalability, bias, and explainability.
- Abstract(参考訳): LLMは、開発を加速し、複雑さを減らし、コストを削減することで、ソフトウェアエンジニアリングを変革している。
ソフトウェアライフサイクルに完全に統合されると、彼らは設計、開発、デプロイメントを推進し、早期バグ検出、継続的改善、重大な問題の迅速な解決を容易にします。
しかし、信頼できるLLM駆動のソフトウェアエンジニアリングは、正確性、スケーラビリティ、バイアス、説明可能性といった複数の課題に対処する必要がある。
関連論文リスト
- Software Performance Engineering for Foundation Model-Powered Software (FMware) [6.283211168007636]
大規模言語モデル(LLM)のようなファンデーションモデル(FM)はソフトウェア開発に革命をもたらしています。
本稿では,FMウェアにおけるソフトウェア性能工学(SPE)の重要性を明らかにする。
認知アーキテクチャ設計、通信プロトコル、チューニングと最適化、デプロイメントの4つの主要な課題を特定します。
論文 参考訳(メタデータ) (2024-11-14T16:42:19Z) - LLMs: A Game-Changer for Software Engineers? [0.0]
GPT-3やGPT-4のような大規模言語モデル(LLM)は、従来のAIアプリケーションを超えた機能を備えた画期的なイノベーションとして登場した。
ソフトウェア開発に革命をもたらす潜在能力は、ソフトウェアエンジニアリング(SE)コミュニティを魅了している。
この記事では、LCMはソフトウェアの開発方法を変えるだけでなく、開発者の役割を再定義するものである、と論じる。
論文 参考訳(メタデータ) (2024-11-01T17:14:37Z) - Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement [62.94719119451089]
Lingma SWE-GPTシリーズは、現実世界のコード提出活動から学び、シミュレーションする。
Lingma SWE-GPT 72BはGitHubの30.20%の問題を解決する。
論文 参考訳(メタデータ) (2024-11-01T14:27:16Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
LLM(Large Language Models)は、複雑な自然言語処理タスクを実行できる計算モデルである。
本稿では,RTL対応LLMの精度と信頼性を高めるためのフレームワークであるAIvrilを紹介する。
論文 参考訳(メタデータ) (2024-09-03T15:07:11Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - DevBench: A Comprehensive Benchmark for Software Development [72.24266814625685]
DevBenchは、ソフトウェア開発ライフサイクルのさまざまな段階にわたる大規模言語モデル(LLM)を評価するベンチマークである。
GPT-4-Turboを含む現在のLLMは、DevBench内での課題の解決に失敗している。
本研究は,LLMを現実のプログラミングアプリケーションに展開する上で,現実的な知見を提供するものである。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z) - Large Language Models for Software Engineering: Survey and Open Problems [35.29302720251483]
本稿では,ソフトウェア工学(SE)におけるLarge Language Models(LLMs)の新しい領域について調査する。
本調査では,ハイブリッド技術(従来のSE+LLM)が,信頼性,効率,効率のよいLLMベースのSEの開発と展開において果たすべき重要な役割を明らかにした。
論文 参考訳(メタデータ) (2023-10-05T13:33:26Z) - Embedded Software Development with Digital Twins: Specific Requirements
for Small and Medium-Sized Enterprises [55.57032418885258]
デジタル双生児は、コスト効率の良いソフトウェア開発とメンテナンス戦略の可能性を秘めている。
私たちは中小企業に現在の開発プロセスについてインタビューした。
最初の結果は、リアルタイムの要求が、これまでは、Software-in-the-Loop開発アプローチを妨げていることを示している。
論文 参考訳(メタデータ) (2023-09-17T08:56:36Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。