論文の概要: GausSurf: Geometry-Guided 3D Gaussian Splatting for Surface Reconstruction
- arxiv url: http://arxiv.org/abs/2411.19454v1
- Date: Fri, 29 Nov 2024 03:54:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:19:55.528881
- Title: GausSurf: Geometry-Guided 3D Gaussian Splatting for Surface Reconstruction
- Title(参考訳): GausSurf:表面再構成のための幾何学誘導型3次元ガウススプラッティング
- Authors: Jiepeng Wang, Yuan Liu, Peng Wang, Cheng Lin, Junhui Hou, Xin Li, Taku Komura, Wenping Wang,
- Abstract要約: GausSurfは、テクスチャリッチな領域におけるマルチビュー一貫性と、シーンのテクスチャレスな領域における通常の事前の幾何学的ガイダンスを採用している。
本手法は,再現性や計算時間の観点から,最先端の手法を超越した手法である。
- 参考スコア(独自算出の注目度): 79.42244344704154
- License:
- Abstract: 3D Gaussian Splatting has achieved impressive performance in novel view synthesis with real-time rendering capabilities. However, reconstructing high-quality surfaces with fine details using 3D Gaussians remains a challenging task. In this work, we introduce GausSurf, a novel approach to high-quality surface reconstruction by employing geometry guidance from multi-view consistency in texture-rich areas and normal priors in texture-less areas of a scene. We observe that a scene can be mainly divided into two primary regions: 1) texture-rich and 2) texture-less areas. To enforce multi-view consistency at texture-rich areas, we enhance the reconstruction quality by incorporating a traditional patch-match based Multi-View Stereo (MVS) approach to guide the geometry optimization in an iterative scheme. This scheme allows for mutual reinforcement between the optimization of Gaussians and patch-match refinement, which significantly improves the reconstruction results and accelerates the training process. Meanwhile, for the texture-less areas, we leverage normal priors from a pre-trained normal estimation model to guide optimization. Extensive experiments on the DTU and Tanks and Temples datasets demonstrate that our method surpasses state-of-the-art methods in terms of reconstruction quality and computation time.
- Abstract(参考訳): 3D Gaussian Splattingは、リアルタイムレンダリング機能を備えた新しいビュー合成において、素晴らしいパフォーマンスを達成した。
しかし、3Dガウシアンを用いた高品質な表面を細部まで再現することは難しい課題である。
本研究では, テクスチャリッチな領域における多視点整合性と, シーンのテクスチャレス領域における通常の先行性から, 幾何学的ガイダンスを取り入れた, 高品質な表面再構成手法であるGausSurfを紹介する。
我々は、シーンを主に2つの主要領域に分けることができることを観察する。
1)テクスチャ豊かで
2) テクスチャのない地域。
テクスチャリッチな領域におけるマルチビュー整合性を実現するため,従来のパッチマッチ型マルチビューステレオ(MVS)アプローチを取り入れて,反復的手法による幾何最適化を導出することにより,再現性の向上を図る。
この方式により、ガウスの最適化とパッチマッチの改良の相互強化が可能となり、再構築結果が大幅に改善され、訓練プロセスが加速される。
一方、テクスチャのない領域では、事前学習された正規推定モデルからの正規先行値を活用して、最適化を導出する。
DTU と Tanks and Temples のデータセットに対する大規模な実験により、我々の手法は再構築の質と計算時間の観点から最先端の手法を超越していることが示された。
関連論文リスト
- 3D Gaussian Splatting with Normal Information for Mesh Extraction and Improved Rendering [8.59572577251833]
ガウス関数から推定される符号距離関数の勾配を用いた新しい正規化法を提案する。
我々は、Mip-NeRF360、Tamps and Temples、Deep-Blendingなどのデータセットに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2025-01-14T18:40:33Z) - 2DGS-Room: Seed-Guided 2D Gaussian Splatting with Geometric Constrains for High-Fidelity Indoor Scene Reconstruction [3.8879997968084137]
高忠実度屋内シーン再構築のための2次元ガウス平滑化手法である2DGS-Roomを導入する。
我々は2次元ガウス分布を制御するためにシード誘導機構を用い、適応的な成長と刈り取り機構によって動的に最適化されたシードポイントの密度を推定した。
幾何的精度をさらに向上するために,単眼深度と通常の先行値を組み合わせて,細部と無テクスチャ領域の制約をそれぞれ与える。
論文 参考訳(メタデータ) (2024-12-04T16:17:47Z) - Tortho-Gaussian: Splatting True Digital Orthophoto Maps [12.796166971391774]
真のデジタルオルソフォトマップ(TDOM)は、デジタル双生児と地理情報システム(GIS)にとって不可欠な製品である
伝統的に、TDOM生成は、様々な課題のために悪化する可能性のある、伝統的なフォトグラムプロセスの複雑なセットを含む。
Tortho-Gaussianは3次元ガウススティング(3DGS)にインスパイアされた新しい手法で、最適化された異方性ガウスカーネルのスティングによってDOMを生成する。
論文 参考訳(メタデータ) (2024-11-29T10:22:38Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
GUS-IRは、粗く光沢のある表面を特徴とする複雑なシーンの逆レンダリング問題に対処するために設計された新しいフレームワークである。
本稿では、逆レンダリング、フォワードシェーディング、遅延シェーディングに広く使われている2つの顕著なシェーディング技術を分析し、比較することから始める。
両手法の利点を組み合わせた統合シェーディングソリューションを提案する。
論文 参考訳(メタデータ) (2024-11-12T01:51:05Z) - DreamPolish: Domain Score Distillation With Progressive Geometry Generation [66.94803919328815]
本稿では,高精細な幾何学と高品質なテクスチャの創出に優れたテキスト・ツー・3D生成モデルであるDreamPolishを紹介する。
幾何構成フェーズでは, 合成過程の安定性を高めるために, 複数のニューラル表現を利用する。
テクスチャ生成フェーズでは、そのような領域に向けて神経表現を導くために、新しいスコア蒸留、すなわちドメインスコア蒸留(DSD)を導入する。
論文 参考訳(メタデータ) (2024-11-03T15:15:01Z) - SplatFace: Gaussian Splat Face Reconstruction Leveraging an Optimizable Surface [7.052369521411523]
SplatFaceは3次元人間の顔再構成のための新しいガウススプレイティングフレームワークであり、正確な事前決定幾何に依存しない。
本手法は,高品質な新規ビューレンダリングと高精度な3Dメッシュ再構成の両方を同時に実現するように設計されている。
論文 参考訳(メタデータ) (2024-03-27T17:32:04Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z) - DN-Splatter: Depth and Normal Priors for Gaussian Splatting and Meshing [19.437747560051566]
カラー画像の勾配に基づく適応的な深度損失を提案し、様々なベースライン上での深度推定と新しいビュー合成結果を改善した。
我々の単純かつ効果的な正則化技術はガウス表現からの直接メッシュ抽出を可能にし、屋内シーンのより物理的に正確な再構築を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:00:31Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
多視点RGB画像からの室内シーンの再構成は、平坦領域とテクスチャレス領域の共存により困難である。
近年の手法では、予測された表面正規化によって支援されたニューラルラジアンス場を利用してシーン形状を復元している。
本研究は, 上記の制限に対処して, 高忠実度表面を細かな詳細で再構築することを目的とする。
論文 参考訳(メタデータ) (2023-09-14T12:05:29Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
画像からテクスチャ化された表面メッシュを生成する新しいフレームワークを提案する。
我々のアプローチは、NeRFを用いて幾何学とビュー依存の外観を効率的に初期化することから始まります。
ジオメトリと共同で外観を洗練し、テクスチャ画像に変換してリアルタイムレンダリングします。
論文 参考訳(メタデータ) (2023-03-03T17:14:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。