論文の概要: RL-MILP Solver: A Reinforcement Learning Approach for Solving Mixed-Integer Linear Programs with Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2411.19517v2
- Date: Mon, 16 Dec 2024 19:33:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:55:55.536454
- Title: RL-MILP Solver: A Reinforcement Learning Approach for Solving Mixed-Integer Linear Programs with Graph Neural Networks
- Title(参考訳): RL-MILPソルバー:グラフニューラルネットワークを用いた混合整数線形プログラムの強化学習手法
- Authors: Tae-Hoon Lee, Min-Soo Kim,
- Abstract要約: Mixed-Integer Linear Programming (MILP) は様々な分野で広く使われている最適化手法である。
MILPの既存のエンドツーエンド学習手法は、決定変数のサブセットの値を生成し、残りの問題を従来の解法に委譲する。
そこで本研究では,MILPと対話して,より優れた実現可能な解を段階的に発見する,新しい強化学習(RL)ベースの解法を提案する。
- 参考スコア(独自算出の注目度): 3.3894236476098185
- License:
- Abstract: Mixed-Integer Linear Programming (MILP) is an optimization technique widely used in various fields. Existing end-to-end learning methods for MILP generate values for a subset of decision variables and delegate the remaining problem to traditional MILP solvers. However, this approach does not guarantee solution feasibility (i.e., satisfying all constraints) due to inaccurate predictions and primarily focuses on prediction for binary decision variables. When addressing MILP involving non-binary integer variables using machine learning (ML), feasibility issues can become even more pronounced. Since finding an optimal solution requires satisfying all constraints, addressing feasibility is critical. To overcome these limitations, we propose a novel reinforcement learning (RL)-based solver that interacts with MILP to incrementally discover better feasible solutions without relying on traditional solvers. We design reward functions tailored for MILP, which enable the RL agent to learn relationships between decision variables and constraints. Furthermore, we leverage a Transformer encoder-based graph neural network (GNN) to effectively model complex relationships among decision variables. Our experimental results demonstrate that the proposed method can solve MILP problems and find near-optimal solutions without delegating the remainder to traditional solvers. The proposed method provides a meaningful step forward as an initial study in solving MILP problems entirely with ML in an end-to-end manner.
- Abstract(参考訳): Mixed-Integer Linear Programming (MILP) は様々な分野で広く使われている最適化手法である。
MILPの既存のエンドツーエンド学習手法は、決定変数のサブセットの値を生成し、残りの問題を従来のMILPソルバに委譲する。
しかし、このアプローチは不正確な予測による解実現可能性(すなわち全ての制約を満たすこと)を保証せず、主に二項決定変数の予測に焦点を当てる。
機械学習(ML)を用いて、非バイナリ整数変数を含むMILPに対処する場合、実現可能性の問題はさらに顕著になる。
最適解を見つけるには、すべての制約を満たす必要があるため、実現可能性に対処することが重要である。
これらの制約を克服するために,従来の解法に頼らずに,MILPと対話してより実用的な解を段階的に発見する,新しい強化学習(RL)ベースの解法を提案する。
我々はMILPに適した報酬関数を設計し、RLエージェントが決定変数と制約の関係を学習できるようにする。
さらに、Transformer Encoder-based graph Neural Network (GNN) を用いて、決定変数間の複雑な関係を効果的にモデル化する。
実験の結果,提案手法はMILP問題を解くことができ,残りの解を従来の解法に委譲することなく準最適解を求めることができることがわかった。
提案手法は,MLをエンド・ツー・エンドで完全に組み合わせたMILP問題を解く上で,最初の研究として有意義な進歩をもたらす。
関連論文リスト
- Learning to Optimize for Mixed-Integer Non-linear Programming [20.469394148261838]
混合整数非NLPプログラム(MINLP)はエネルギーシステムや輸送など様々な領域で発生するが、解決は困難である。
機械学習の最近の進歩は、最適化のための学習として知られる領域において、顕著な成功をもたらしている。
勾配を保ちながら整数出力を生成する2つの異なる補正層を提案する。
論文 参考訳(メタデータ) (2024-10-14T20:14:39Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - An Expandable Machine Learning-Optimization Framework to Sequential
Decision-Making [0.0]
逐次的意思決定問題を効率的に解決する統合予測最適化(PredOpt)フレームワークを提案する。
本稿では,機械学習(ML)における逐次依存,実現可能性,一般化といった課題に対処し,インスタンス問題に対する最適解の予測を行う。
論文 参考訳(メタデータ) (2023-11-12T21:54:53Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Learning To Dive In Branch And Bound [95.13209326119153]
グラフニューラルネットワークを用いて特定の潜水構造を学習するためのL2Diveを提案する。
我々は、変数の割り当てを予測するために生成モデルを訓練し、線形プログラムの双対性を利用して潜水決定を行う。
論文 参考訳(メタデータ) (2023-01-24T12:01:45Z) - A Survey on Influence Maximization: From an ML-Based Combinatorial
Optimization [2.9882027965916413]
影響最大化(IM)は、モバイルネットワーク、ソーシャルコンピューティング、レコメンデーションシステムで広く用いられる古典的な最適化問題である。
主な課題は、IM問題のNP硬度と、影響力の広がりを推定する#P硬度である。
我々は,関連する背景知識,基本原則,共通手法,応用研究の要約に重点を置いている。
論文 参考訳(メタデータ) (2022-11-06T10:13:42Z) - MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers [13.790116387956703]
混合整数プログラミング(MIP)技術は最適化問題の定式化と解法を提供する。
MIP-GNNは、データ駆動の洞察でそのような問題を解決するための一般的なフレームワークである。
MIP-GNNを最先端のMIP解決器に統合し,ノード選択やウォームスタートといったタスクに適用する。
論文 参考訳(メタデータ) (2022-05-27T19:34:14Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。