論文の概要: Noncommutative Model Selection and the Data-Driven Estimation of Real Cohomology Groups
- arxiv url: http://arxiv.org/abs/2411.19894v1
- Date: Fri, 29 Nov 2024 17:58:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:18:17.695151
- Title: Noncommutative Model Selection and the Data-Driven Estimation of Real Cohomology Groups
- Title(参考訳): 非可換モデル選択と実コホモロジー群のデータ駆動推定
- Authors: Araceli Guzmán-Tristán, Antonio Rieser, Eduardo Velázquez-Richards,
- Abstract要約: 実コホモロジー群$Hk (X ; mathbbR)$をコンパクトな計量測度空間として推定するための3つのデータ駆動手法を提案する。
X$ が $mathbbRn$ に埋め込まれている場合のいくつかの計算実験の結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose three completely data-driven methods for estimating the real cohomology groups $H^k (X ; \mathbb{R})$ of a compact metric-measure space $(X, d_X, \mu_X)$ embedded in a metric-measure space $(Y,d_Y,\mu_Y)$, given a finite set of points $S$ sampled from a uniform distrbution $\mu_X$ on $X$, possibly corrupted with noise from $Y$. We present the results of several computational experiments in the case that $X$ is embedded in $\mathbb{R}^n$, where two of the three algorithms performed well.
- Abstract(参考訳): 実コホモロジー群 $H^k (X ; \mathbb{R})$ のコンパクト計量測度空間 $(X, d_X, \mu_X)$ を測度空間 $(Y, d_Y,\mu_Y)$ に埋め込まれた完全データ駆動の3つの方法を提案する。
X$ が $\mathbb{R}^n$ に埋め込まれている場合のいくつかの計算実験の結果を示す。
関連論文リスト
- A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - Parameterized Approximation for Robust Clustering in Discrete Geometric Spaces [2.687607197645453]
次元$Theta(log n)$ が $(sqrt3/2-o(1))$hard である場合でさえ、FPTアルゴリズムを近似する。
また、次元 $Theta(log n)$ が $(sqrt3/2-o(1))$hard であるような特別な場合でさえ、FPTアルゴリズムを近似することを示す。
論文 参考訳(メタデータ) (2023-05-12T08:43:28Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
最も強力で成功したモダリティの1つは、全ての分布を$ell$距離に近似し、基本的に最も近い$t$-piece次数-$d_$の少なくとも1倍大きい。
本稿では,この数値をほぼ最適に推定する手法を提案する。
論文 参考訳(メタデータ) (2022-02-15T03:49:28Z) - Multimeasurement Generative Models [7.502947376736449]
我々は、密度$p_X$ in $mathbbRd$を未知分布からサンプリングする問題を学習とサンプリングの問題を$p_mathbfY$ in $mathbbRMd$とする。
論文 参考訳(メタデータ) (2021-12-18T02:11:36Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
我々は、$bf K$ の固有スペクトルが$bf w$ の i.d. 成分の分布とは独立であることを示す。
3次ランダム特徴(TRF)と呼ばれる新しいランダム手法を提案する。
提案したランダムな特徴の計算には乗算が不要であり、古典的なランダムな特徴に比べてストレージに$b$のコストがかかる。
論文 参考訳(メタデータ) (2021-10-05T09:33:49Z) - Universal Regular Conditional Distributions via Probability
Measure-Valued Deep Neural Models [3.8073142980733]
提案したフレームワークを用いて構築されたモデルはすべて、$C(mathcalX,mathcalP_1(mathcalY))$で密集している。
提案モデルはまた、ほとんどのランダム化された機械学習モデルに存在するアレラトリック不確かさを汎用的に表現できることも示している。
論文 参考訳(メタデータ) (2021-05-17T11:34:09Z) - Non-Parametric Estimation of Manifolds from Noisy Data [1.0152838128195467]
ノイズの多いサンプルの有限集合から$mathbbRD$の$d$次元部分多様体を推定する問題を検討する。
点推定では$n-frack2k + d$、接空間の推定では$n-frack-12k + d$の収束率を推定する。
論文 参考訳(メタデータ) (2021-05-11T02:29:33Z) - Provably Approximated ICP [40.349822671753024]
そこで、emphalwaysが$p times q$で3ドルのペアからなる"witness"集合があることを証明し、新しいアライメントアルゴリズムにより、この大域的最適化に対する定数因子近似を定義する。
私たちの近似定数は、実際には1ドル近くであり、最先端のアルゴリズムよりも最大10ドル小さいです。
論文 参考訳(メタデータ) (2021-01-10T18:09:29Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
我々は、s$ of cardinality $m = (k/epsilon)o_d(k1/d)$ に対して $epsilon$-cover が存在することを示す。
構造的結果に基づいて,いくつかの基本的高次元確率モデル隠れ変数の学習アルゴリズムを改良した。
論文 参考訳(メタデータ) (2020-12-14T18:14:08Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - A Randomized Algorithm to Reduce the Support of Discrete Measures [79.55586575988292]
離散確率測度が$N$原子と$n$実数値関数の集合で成り立つと、元の$N$原子の$n+1$の部分集合で支えられる確率測度が存在する。
我々は、負の円錐によるバリセンターの簡単な幾何学的特徴付けを与え、この新しい測度を「グリード幾何学的サンプリング」によって計算するランダム化アルゴリズムを導出する。
次に、その性質を研究し、それを合成および実世界のデータにベンチマークして、$Ngg n$ regimeにおいて非常に有益であることを示す。
論文 参考訳(メタデータ) (2020-06-02T16:38:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。