論文の概要: DLaVA: Document Language and Vision Assistant for Answer Localization with Enhanced Interpretability and Trustworthiness
- arxiv url: http://arxiv.org/abs/2412.00151v2
- Date: Thu, 10 Jul 2025 02:48:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 14:32:07.661284
- Title: DLaVA: Document Language and Vision Assistant for Answer Localization with Enhanced Interpretability and Trustworthiness
- Title(参考訳): DLaVA: 解釈可能性と信頼性を向上したアンサーローカライゼーションのための文書言語と視覚アシスタント
- Authors: Ahmad Mohammadshirazi, Pinaki Prasad Guha Neogi, Ser-Nam Lim, Rajiv Ramnath,
- Abstract要約: VQA (Document Visual Question Answering) は、テキストの検出、認識、空間的推論の堅牢な統合を要求する。
DLaVAは、マルチモーダル大言語モデル(MLLM)を利用して、ゼロショット応答のローカライゼーションを行う訓練不要パイプラインである。
- 参考スコア(独自算出の注目度): 34.170341753045776
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Document Visual Question Answering (VQA) demands robust integration of text detection, recognition, and spatial reasoning to interpret complex document layouts. In this work, we introduce DLaVA, a novel, training-free pipeline that leverages Multimodal Large Language Models (MLLMs) for zero-shot answer localization in order to improve trustworthiness, interpretability, and explainability. By leveraging an innovative OCR-free approach that organizes text regions with unique bounding box IDs, the proposed method preserves spatial contexts without relying on iterative OCR or chain-of-thought reasoning, thus substantially reducing the computational complexity. We further enhance the evaluation protocol by integrating Intersection over Union (IoU) metrics alongside Average Normalized Levenshtein Similarity (ANLS), thereby ensuring that not only textual accuracy is considered, but spatial accuracy is taken into account, ultimately reducing the risks of AI hallucinations and improving trustworthiness. Experiments on benchmark datasets demonstrate competitive performance compared to state-of-the-art techniques, with significantly lower computational complexity and enhanced accuracies and reliability for high-stakes applications. The code and datasets utilized in this study for DLaVA are accessible at: https://github.com/ahmad-shirazi/AnnotMLLM.
- Abstract(参考訳): Document Visual Question Answering (VQA)は、複雑な文書レイアウトを解釈するために、テキストの検出、認識、空間的推論の堅牢な統合を要求する。
本研究では,マルチモーダル大規模言語モデル(MLLM)をゼロショット応答のローカライゼーションに活用し,信頼性,解釈可能性,説明可能性を向上させる,新たな学習自由パイプラインであるDLaVAを紹介する。
独自のバウンディングボックスIDを持つテキスト領域を整理する革新的なOCRフリーアプローチを活用することにより,提案手法は,反復的なOCRやチェーンオブ思考推論に頼ることなく,空間的コンテキストを保存し,複雑性を大幅に低減する。
我々は、平均正規化レベンシュテイン類似度(ANLS)とともにIoU(Intersection over Union)メトリクスを統合することにより、評価プロトコルをさらに強化し、テキストの精度だけでなく、空間的精度も考慮し、最終的にAI幻覚のリスクを低減し、信頼性を向上させる。
ベンチマークデータセットの実験では、最先端技術と比較して競争性能が向上し、計算の複雑さが大幅に低減し、高度なアプリケーションに対する精度と信頼性が向上した。
この研究で使用されたコードとデータセットは、https://github.com/ahmad-shirazi/AnnotMLLM.comでアクセスできる。
関連論文リスト
- QID: Efficient Query-Informed ViTs in Data-Scarce Regimes for OCR-free Visual Document Understanding [53.69841526266547]
トレーニング済みのVision-Language Modelを新しいデータセットで微調整することは、ビジョンエンコーダの最適化に不足することが多い。
視覚エンコーダにクエリの埋め込みを統合する,新しい,合理化されたアーキテクチャ保存アプローチであるQIDを導入する。
論文 参考訳(メタデータ) (2025-04-03T18:47:16Z) - Towards Text-Image Interleaved Retrieval [49.96332254241075]
テキスト画像検索(TIIR)タスクを導入し、クエリと文書をインターリーブしたテキスト画像シーケンスとする。
我々は、自然にインターリーブされたwikiHowチュートリアルに基づいてTIIRベンチマークを構築し、インターリーブされたクエリを生成するために特定のパイプラインを設計する。
異なる粒度で視覚トークンの数を圧縮する新しいMMEを提案する。
論文 参考訳(メタデータ) (2025-02-18T12:00:47Z) - Transparent NLP: Using RAG and LLM Alignment for Privacy Q&A [15.86510147965235]
一般データ保護規則では、正確な処理情報を明確でアクセスしやすいものにする必要がある。
本稿では,その義務を果たすためのアライメント技術によって強化された,最先端の検索生成システムについて検討する。
論文 参考訳(メタデータ) (2025-02-10T16:42:00Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
大規模言語モデル(LLM)は、文脈内学習において顕著な習熟性を示している。
ICLプロンプトにおけるタスク情報をアテンションヘッドの関数として符号化するための自動定式化を導入する。
提案手法の有効性は,最後の隠れ状態の分布と最適に実行されたテキスト内学習モデルとの整合性に起因していることを示す。
論文 参考訳(メタデータ) (2025-02-08T00:16:44Z) - CATER: Leveraging LLM to Pioneer a Multidimensional, Reference-Independent Paradigm in Translation Quality Evaluation [0.0]
Comprehensive AI-assisted Translation Edit Ratio (CATER)は、機械翻訳(MT)の品質を評価するための新しいフレームワークである。
大きな言語モデル(LLM)は、慎重に設計されたプロンプトベースのプロトコルによって使用される。
論文 参考訳(メタデータ) (2024-12-15T17:45:34Z) - VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
本稿では,マルチドキュメント設定でQAシステムを評価するために設計された,初の総合ベンチマークであるVisDoMBenchを紹介する。
視覚とテキストのRAGを同時に利用する新しいマルチモーダル検索拡張生成(RAG)手法であるVisDoMRAGを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:24:55Z) - Bridging Context Gaps: Leveraging Coreference Resolution for Long Contextual Understanding [28.191029786204624]
大規模言語モデル(LLM)の性能向上を目的としたLong Question Coreference Adaptation (LQCA) 手法を提案する。
このフレームワークは、長いコンテキストに合わせて調整されたコア参照解決に焦点を当てており、モデルが参照を効果的に識別し、管理することができる。
このフレームワークはLLMの扱いやすいパーティションを提供し、理解を深める。
論文 参考訳(メタデータ) (2024-10-02T15:39:55Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented system を提案する。
VERAは、外部検索が必要なかどうかを最初にチェックし、検索したコンテキストの関連性と冗長性を評価し、非必要情報の除去のために精査する評価器-既存のLCMを使用している。
論文 参考訳(メタデータ) (2024-09-18T16:10:47Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
大規模言語モデル(LLM)の隠れ状態表現を利用した文脈質問応答における帰属手法を提案する。
提案手法は,より詳細な属性を提供し,生成した回答の質を保ちながら,広範囲なモデル再訓練および検索モデルオーバーヘッドの必要性を回避している。
本稿では,LLM世代に対するトークンレベルのアノテーションを文脈質問応答設定に有する属性データセットであるVerifiability-granularを提案する。
論文 参考訳(メタデータ) (2024-05-28T09:12:44Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
我々は,シンプルで効果的なグローバル局所意味的一貫性学習(GLSCL)を提案する。
GLSCLは、テキストビデオ検索のためのモダリティをまたいだ潜在共有セマンティクスを活用する。
本手法はSOTAと同等の性能を実現し,計算コストの約220倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-05-21T11:59:36Z) - Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval [92.13664084464514]
合成画像検索(CIR)の課題は,検索画像とユーザの意図を記述したテキストに基づいて画像を取得することである。
既存の手法は、CIRタスクにおける高度な大規模視覚言語(VL)モデルにおいて大きな進歩を遂げているが、それらは一般的に、モデルトレーニングのためのラベル付き三重項の欠如とリソース制限された環境への展開の困難という2つの大きな問題に悩まされている。
本稿では、VLモデルを利用して合成学習のためのラベルなし画像のみに依存する画像2Sentenceに基づく非対称ゼロショット合成画像検索(ISA)を提案する。
論文 参考訳(メタデータ) (2024-03-03T07:58:03Z) - Zero-Shot Video Moment Retrieval from Frozen Vision-Language Models [58.17315970207874]
モーメント・テキストアライメントを容易にするため、任意のVLMから一般化可能なビジュアル・テクスチャの事前適応のためのゼロショット手法を提案する。
3つのVMRベンチマークデータセットで実施された実験は、ゼロショットアルゴリズムの顕著なパフォーマンス上の利点を示している。
論文 参考訳(メタデータ) (2023-09-01T13:06:50Z) - External Reasoning: Towards Multi-Large-Language-Models Interchangeable
Assistance with Human Feedback [0.0]
本稿では、外部リポジトリからの知識の選択的統合により、LLM(Large Language Models)を拡張できることを提案する。
このアプローチの中心は、複数のLLMインターチェンジ支援に基づくTextbf外部推論のためのタイレッドポリシーの確立である。
結果は、Crefcomparisonにおける最先端のパフォーマンスを示し、ChatPDF.comを含む既存のソリューションを上回った。
論文 参考訳(メタデータ) (2023-07-05T17:05:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。