論文の概要: Differentiable High-Order Markov Models for Spectrum Prediction
- arxiv url: http://arxiv.org/abs/2412.00328v1
- Date: Sat, 30 Nov 2024 03:01:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:41:44.821960
- Title: Differentiable High-Order Markov Models for Spectrum Prediction
- Title(参考訳): スペクトル予測のための微分可能な高次マルコフモデル
- Authors: Vincent Corlay, Tatsuya Nakazato, Kanako Yamaguchi, Akinori Nakajima,
- Abstract要約: この研究は、動的無線環境におけるスペクトル予測のための高次マルコフモデルを再考する。
本稿では,検知長とモデル順序のミスマッチに対処するフレームワークと,大規模に発生する状態空間の複雑さについて紹介する。
我々は、勾配に基づく教師あり学習を通じて確率遷移行列の微調整を可能にすることにより、このマルコフフレームワークを拡張した。
- 参考スコア(独自算出の注目度): 1.8749305679160366
- License:
- Abstract: The advent of deep learning and recurrent neural networks revolutionized the field of time-series processing. Therefore, recent research on spectrum prediction has focused on the use of these tools. However, spectrum prediction, which involves forecasting wireless spectrum availability, is an older field where many "classical" tools were considered around the 2010s, such as Markov models. This work revisits high-order Markov models for spectrum prediction in dynamic wireless environments. We introduce a framework to address mismatches between sensing length and model order as well as state-space complexity arising with large order. Furthermore, we extend this Markov framework by enabling fine-tuning of the probability transition matrix through gradient-based supervised learning, offering a hybrid approach that bridges probabilistic modeling and modern machine learning. Simulations on real-world Wi-Fi traffic demonstrate the competitive performance of high-order Markov models compared to deep learning methods, particularly in scenarios with constrained datasets containing outliers.
- Abstract(参考訳): ディープラーニングとリカレントニューラルネットワークの出現は、時系列処理の分野に革命をもたらした。
したがって、近年のスペクトル予測の研究は、これらのツールの使用に焦点を当てている。
しかし、無線スペクトル可用性の予測を含むスペクトル予測は、2010年代にマルコフモデルなど多くの「古典的」ツールが検討された古い分野である。
この研究は、動的無線環境におけるスペクトル予測のための高次マルコフモデルを再考する。
本稿では,検知長とモデル順序のミスマッチに対処するフレームワークと,大規模に発生する状態空間の複雑さについて紹介する。
さらに、勾配に基づく教師あり学習を通じて確率遷移行列の微調整を可能にし、確率論的モデリングと現代の機械学習を橋渡しするハイブリッドアプローチを提供することにより、このマルコフフレームワークを拡張した。
実世界のWi-Fiトラフィックのシミュレーションは、特に外れ値を含む制約付きデータセットのシナリオにおいて、ディープラーニング手法と比較して、高階マルコフモデルの競合性能を示す。
関連論文リスト
- An unified approach to link prediction in collaboration networks [0.0]
本稿では、協調ネットワークにおけるリンク予測の3つのアプローチについて検討し、比較する。
ERGMはネットワーク内の一般的な構造パターンをキャプチャするために使用される。
GCNとWord2Vec+MLPモデルはディープラーニング技術を利用してノードとその関係の適応的構造表現を学習する。
論文 参考訳(メタデータ) (2024-11-01T22:40:39Z) - Recurrent Interpolants for Probabilistic Time Series Prediction [10.422645245061899]
リカレントニューラルネットワークやトランスフォーマーのような逐次モデルは、確率的時系列予測の標準となっている。
近年の研究では、拡散モデルやフローベースモデルを用いて、時系列計算や予測に拡張した生成的アプローチについて検討している。
本研究は、補間剤と制御機能付き条件生成に基づく、リカレントニューラルネットワークの効率と拡散モデルの確率的モデリングを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-18T03:52:48Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - On the Resurgence of Recurrent Models for Long Sequences -- Survey and
Research Opportunities in the Transformer Era [59.279784235147254]
この調査は、Recurrenceの統一の傘の下に構築されたこれらのトレンドの概要を提供することを目的としている。
長いシーケンスを処理するという考え方を捨てる際に顕著になる新しい研究機会を強調している。
論文 参考訳(メタデータ) (2024-02-12T23:55:55Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
我々は、ニューラルネットワークを備えたSDEの集合を用いて、ノイズのある時系列の長期的な傾向を予測する。
まず、位相空間再構成法を用いて時系列データの固有次元を抽出する。
次に、$alpha$-stable L'evyの動作によって駆動されるSDEを探索し、時系列データをモデル化し、ニューラルネットワーク近似を用いて問題を解く。
論文 参考訳(メタデータ) (2021-11-25T16:49:01Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - Deep Probabilistic Time Series Forecasting using Augmented Recurrent
Input for Dynamic Systems [12.319812075685956]
我々は、深部生成モデルと状態空間モデル(SSM)の両方の進歩を組み合わせて、新しいデータ駆動の深部確率的シーケンスモデルを考え出す。
特に、リカレントニューラルネットワーク(RNN)を用いた変動配列モデルを構築するために、一般的なエンコーダデコーダ生成構造に従う。
トレーニングと予測の不整合を緩和するために,次のステップでハイブリッド出力を入力として使用することを提案する。
論文 参考訳(メタデータ) (2021-06-03T23:41:11Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。