Long-distance cascaded fluorescence of cold Cesium atoms coupled to an optical nanofiber
- URL: http://arxiv.org/abs/2412.01099v2
- Date: Mon, 21 Jul 2025 23:12:27 GMT
- Title: Long-distance cascaded fluorescence of cold Cesium atoms coupled to an optical nanofiber
- Authors: Mohammad Sadeghi, Wayne Crump, Scott Parkins, Maarten Hoogerland,
- Abstract summary: We demonstrate the first experimental realization of cascaded resonance fluorescence over a 64-meter propagation delay time.<n>Results establish the longest-distance one-way cascaded atom-photon interface reported to date.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate the first experimental realization of cascaded resonance fluorescence over a 64-meter propagation delay time between two spatially and temporally independent ensembles of laser-cooled Cesium atoms coupled to an optical nanofiber. Spontaneously emitted photons from a strongly driven first ensemble are guided through a standard fiber, reflected by a fiber Bragg grating mirror, and interact with a second ensemble, producing a unidirectional two-node cascaded system. The cascaded fluorescence spectrum is broadened and blue-shifted relative to the original fluorescence spectrum. Our simple model reproduces the power broadening and the cascaded fluorescence spectrum, as well as the ratio of cascaded to original photon flux, giving insight into non-Markovian dynamics. Our results establish the longest-distance one-way cascaded atom-photon interface reported to date, providing a stepping stone towards a fiber-based platform for quantum networking.
Related papers
- Direct detection of down-converted photons spontaneously produced at a single Josephson junction [0.0]
We study spontaneous photon decay into multiple photons triggered by strong non-linearities in a superconducting quantum simulator.
Results open exciting prospects for the burgeoning field of many-body quantum optics.
arXiv Detail & Related papers (2024-05-01T09:49:03Z) - Coherence in resonance fluorescence [12.793630118234434]
Resonance fluorescence of a two-level emitter displays persistently anti-bunching irrespective of the excitation intensity.<n>We propose a unified model that treats all fluorescence photons as spontaneous emission, one at a time.<n>Our work provides an intuitive understanding of coherent light-matter interaction and may stimulate new applications.
arXiv Detail & Related papers (2023-12-21T11:25:31Z) - Many-photon scattering and entangling in a waveguide with a
{\Lambda}-type atom [55.2480439325792]
We show that after transmission of a short few-photon pulse, the final state of the atom and all the photons is a genuine multipartite entangled state belonging to the W class.
The parameters of the input pulse are optimized to maximize the efficiency of three- and four-partite W-state production.
arXiv Detail & Related papers (2023-09-25T09:06:28Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Ultrafast Measurement of Energy-Time Entanglement with an Optical Kerr
Shutter [0.0]
We implement optical Kerr shutters in single mode fibers to map out the sub-picosecond correlations of energy-time entangled photon pairs.
Measurements are used to verify entanglement by means of the violation of a time-bandwidth inequality.
arXiv Detail & Related papers (2023-05-23T20:02:20Z) - Room Temperature Fiber-Coupled single-photon devices based on Colloidal
Quantum Dots and SiV centers in Back Excited Nanoantennas [91.6474995587871]
Directionality is achieved with a hybrid metal-dielectric bullseye antenna.
Back-excitation is permitted by placement of the emitter at or in a sub-wavelength hole positioned at the bullseye center.
arXiv Detail & Related papers (2023-03-19T14:54:56Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Engineering entangled photons for transmission in ring-core optical
fibers [0.0]
We study the generation of entangled photons tailor-made for coupling into ring core optical fibers.
We show that the coupling of photon pairs produced by parametric down-conversion can be increased by close to a factor of three.
arXiv Detail & Related papers (2021-09-07T12:55:33Z) - Collective radiative dynamics of an ensemble of cold atoms coupled to an
optical waveguide [0.0]
We experimentally and theoretically investigate collective radiative effects in an ensemble of cold atoms coupled to a single-mode optical nanofiber.
Our results highlight the unique opportunities offered by nanophotonic cold atom systems for the experimental investigation of light-matter interaction.
arXiv Detail & Related papers (2021-09-02T12:22:04Z) - Collection efficiency of optical photons generated from microwave
excitations of a Bose-Einstein condensate [0.0]
Stimulated Raman scattering of atoms with $Lambda$-configuration of levels is a promising tool for transducing microwave photons to optical photons.
We consider an atomic Bose-Einstein condensate whose large phase-space density highly amplifies the coupling to the microwave field.
We determine the optimal conditions for the emitted optical photons to be collected into the guided modes of optical fibers.
arXiv Detail & Related papers (2021-08-31T09:56:18Z) - Spontaneous Parametric Down-Conversion from Resonant Metasurfaces [0.0]
We demonstrate first-time generation of photon pairs via spontaneous parametric-down conversion in lithium niobate quantum optical metasurfaces.
By engineering the quantum optical metasurface, we tailor the photon-pair spectrum in a controlled way.
arXiv Detail & Related papers (2021-03-15T16:47:44Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Directional emission of down-converted photons from a dielectric
nano-resonator [55.41644538483948]
We theoretically describe the generation of photon pairs in the process of spontaneous parametric down-conversion.
We reveal that highly directional photon-pair generation can be observed utilising the nonlinear Kerker-type effect.
arXiv Detail & Related papers (2020-11-16T10:30:04Z) - Unraveling two-photon entanglement via the squeezing spectrum of light
traveling through nanofiber-coupled atoms [0.0]
We observe a weak guided light field transmitted through an ensemble of atoms and an optical nanofiber.
From the measured squeezing spectrum we gain access to the phase and amplitude of the energy-time entangled part of the two-photon wavefunction.
Our characterization of the entangled two-photon component constitutes a diagnostic tool for quantum optics devices.
arXiv Detail & Related papers (2020-10-19T12:57:50Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z) - Highly photo-stable Perovskite nanocubes: towards integrated single
photon sources based on tapered nanofibers [0.0]
We present a full analysis of the optical and quantum properties of highly efficient perovskite nanocubes synthesized with an established method.
We achieve for the first time the coupling of a single perovskite nanocube with a tapered optical nanofiber in order to aim for a compact integrated single photon source for future applications.
arXiv Detail & Related papers (2020-05-19T11:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.