論文の概要: Occam's LGS: A Simple Approach for Language Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2412.01807v1
- Date: Mon, 02 Dec 2024 18:50:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 21:11:22.70799
- Title: Occam's LGS: A Simple Approach for Language Gaussian Splatting
- Title(参考訳): OccamのLGS: 言語ガウススプティングのための簡単なアプローチ
- Authors: Jiahuan Cheng, Jan-Nico Zaech, Luc Van Gool, Danda Pani Paudel,
- Abstract要約: 言語接地型3次元ガウススプラッティングの高度な技術は、単に不要であることを示す。
オッカムのカミソリを手作業に適用し、重み付けされた多視点特徴集計を行う。
我々の結果は2桁のスピードアップによる最先端の結果を提供する。
- 参考スコア(独自算出の注目度): 57.00354758206751
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: TL;DR: Gaussian Splatting is a widely adopted approach for 3D scene representation that offers efficient, high-quality 3D reconstruction and rendering. A major reason for the success of 3DGS is its simplicity of representing a scene with a set of Gaussians, which makes it easy to interpret and adapt. To enhance scene understanding beyond the visual representation, approaches have been developed that extend 3D Gaussian Splatting with semantic vision-language features, especially allowing for open-set tasks. In this setting, the language features of 3D Gaussian Splatting are often aggregated from multiple 2D views. Existing works address this aggregation problem using cumbersome techniques that lead to high computational cost and training time. In this work, we show that the sophisticated techniques for language-grounded 3D Gaussian Splatting are simply unnecessary. Instead, we apply Occam's razor to the task at hand and perform weighted multi-view feature aggregation using the weights derived from the standard rendering process, followed by a simple heuristic-based noisy Gaussian filtration. Doing so offers us state-of-the-art results with a speed-up of two orders of magnitude. We showcase our results in two commonly used benchmark datasets: LERF and 3D-OVS. Our simple approach allows us to perform reasoning directly in the language features, without any compression whatsoever. Such modeling in turn offers easy scene manipulation, unlike the existing methods -- which we illustrate using an application of object insertion in the scene. Furthermore, we provide a thorough discussion regarding the significance of our contributions within the context of the current literature. Project Page: https://insait-institute.github.io/OccamLGS/
- Abstract(参考訳): TL;DR:Gaussian Splattingは、3Dシーンの表現に広く採用されている手法であり、効率的で高品質な3D再構成とレンダリングを提供する。
3DGSの成功の大きな理由は、ガウスのセットでシーンを表現することの単純さである。
視覚表現を超えてシーン理解を強化するため,セマンティック・ビジョン言語機能を備えた3次元ガウス・スプラッティングの拡張手法が開発されている。
この設定では、複数の2次元ビューから3Dガウススプティングの言語特徴を集約することが多い。
既存の研究は、計算コストとトレーニング時間に繋がる煩雑な手法を用いて、この集約問題に対処している。
本研究では,3次元ガウススプラッティングの高度化技術は,単に不要であることを示す。
代わりに、オッカムのカミソリを手作業に適用し、標準レンダリングプロセスから得られた重みを使って重み付き多視点特徴集計を行い、続いて単純なヒューリスティックベースノイズガウスフィルタを行う。
そうすることで、最先端の成果を2桁のスピードアップで実現できます。
この結果は、LERFと3D-OVSの2つの一般的なベンチマークデータセットで紹介する。
私たちの単純なアプローチでは、圧縮を一切行わずに、言語機能で推論を直接実行できます。
このようなモデリングは、既存のメソッドとは異なり、簡単にシーンを操作できます。
さらに、現在の文献の文脈における貢献の重要性について、徹底的な議論を行う。
Project Page: https://insait-institute.github.io/OccamLGS/
関連論文リスト
- Training-Free Hierarchical Scene Understanding for Gaussian Splatting with Superpoint Graphs [16.153129392697885]
ガウス原始体から直接スーパーポイントグラフを構築する訓練自由フレームワークを導入する。
スーパーポイントグラフはシーンを空間的にコンパクトでセマンティックなコヒーレントな領域に分割し、ビュー一貫性の3Dエンティティを形成する。
提案手法は,30時間以上のセグメンテーションを高速化し,最先端のオープン語彙セグメンテーション性能を実現する。
論文 参考訳(メタデータ) (2025-04-17T17:56:07Z) - SuperGSeg: Open-Vocabulary 3D Segmentation with Structured Super-Gaussians [77.77265204740037]
3D Gaussian Splattingは、その効率的なトレーニングとリアルタイムレンダリングで注目を集めている。
我々は,協調型コンテキスト認識シーン表現を促進する新しいアプローチであるSuperGSegを紹介する。
SuperGSegは、オープン語彙オブジェクトローカライゼーションとセマンティックセグメンテーションタスクの両方において、以前の作業より優れている。
論文 参考訳(メタデータ) (2024-12-13T16:01:19Z) - SmileSplat: Generalizable Gaussian Splats for Unconstrained Sparse Images [91.28365943547703]
SmileSplatという新しい一般化可能なガウス格子法が提案され,様々なシナリオに対して画素整列ガウス波を再構成する。
提案手法は,様々な3次元視覚タスクにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-27T05:52:28Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
スパースビューカメラ設定下での高解像度画像レンダリングのための一般化可能なガウススプラッティング手法を提案する。
我々は,人間のみのデータや人景データに基づいてガウスパラメータ回帰モジュールをトレーニングし,深度推定モジュールと共同で2次元パラメータマップを3次元空間に引き上げる。
いくつかのデータセットに対する実験により、我々の手法はレンダリング速度を超越しながら最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-11-18T08:18:44Z) - HiSplat: Hierarchical 3D Gaussian Splatting for Generalizable Sparse-View Reconstruction [46.269350101349715]
HiSplatは、一般化可能な3Dガウススプラッティングのための新しいフレームワークである。
階層的な3Dガウスを粗大な戦略で生成する。
これにより、再構築品質とデータセット間の一般化が大幅に向上する。
論文 参考訳(メタデータ) (2024-10-08T17:59:32Z) - SplatLoc: 3D Gaussian Splatting-based Visual Localization for Augmented Reality [50.179377002092416]
より少ないパラメータで高品質なレンダリングが可能な効率的なビジュアルローカライズ手法を提案する。
提案手法は,最先端の暗黙的視覚的ローカライゼーションアプローチに対して,より優れた,あるいは同等なレンダリングとローカライゼーション性能を実現する。
論文 参考訳(メタデータ) (2024-09-21T08:46:16Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
セマンティック・ガウシアン(Semantic Gaussians)は,3次元ガウシアン・スプレイティングをベースとした,新しいオープン語彙シーン理解手法である。
既存の手法とは異なり、様々な2次元意味的特徴を3次元ガウスの新たな意味的構成要素にマッピングする多目的投影手法を設計する。
我々は,高速な推論のために,生の3Dガウスから意味成分を直接予測する3Dセマンティックネットワークを構築した。
論文 参考訳(メタデータ) (2024-03-22T21:28:19Z) - Recent Advances in 3D Gaussian Splatting [31.3820273122585]
3次元ガウススプラッティングは、新規なビュー合成のレンダリング速度を大幅に高速化した。
3D Gaussian Splattingの明示的な表現は、動的再構成、幾何学的編集、物理シミュレーションなどの編集作業を容易にする。
本稿では,3次元再構成,3次元編集,その他の下流アプリケーションに大まかに分類できる最近の3次元ガウス散乱法について,文献的考察を行う。
論文 参考訳(メタデータ) (2024-03-17T07:57:08Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.80822249039235]
3Dガウススプラッティングは、新しいビュー合成のための代替の3D表現として登場した。
SAGDは3D-GSのための概念的にシンプルで効果的な境界拡張パイプラインである。
提案手法は粗い境界問題なく高品質な3Dセグメンテーションを実現し,他のシーン編集作業にも容易に適用できる。
論文 参考訳(メタデータ) (2024-01-31T14:19:03Z) - Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields [54.482261428543985]
ニューラル・ラジアンス・フィールドを使用する手法は、新しいビュー合成のような従来のタスクに汎用的である。
3次元ガウシアンスプラッティングは, 実時間ラディアンス場レンダリングにおける最先端の性能を示した。
この問題を効果的に回避するために,アーキテクチャとトレーニングの変更を提案する。
論文 参考訳(メタデータ) (2023-12-06T00:46:30Z) - Language Embedded 3D Gaussians for Open-Vocabulary Scene Understanding [2.517953665531978]
オープン語彙クエリタスクのための新しいシーン表現であるLanguage Embedded 3D Gaussiansを紹介する。
我々の表現は、現在の言語埋め込み表現において、最高の視覚的品質と言語クエリの精度を達成する。
論文 参考訳(メタデータ) (2023-11-30T11:50:07Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。