Quantum sensitivity of parametric oscillators
- URL: http://arxiv.org/abs/2412.02887v2
- Date: Sun, 15 Dec 2024 18:47:25 GMT
- Title: Quantum sensitivity of parametric oscillators
- Authors: Alex Gu, Jamison Sloan, Charles Roques-Carmes, Seou Choi, Eric I. Rosenthal, Michael Horodynski, Yannick Salamin, Jelena Vučković, Marin Soljačić,
- Abstract summary: We show that quantum statistics of arbitrary initial states are imprinted in the early-stage dynamics and can persist in the steady-state probabilities.
Our work opens the way to a new class of experiments that can test the sensitivity of macroscopic systems to quantum initial conditions.
- Score: 4.160663836455116
- License:
- Abstract: Many quantum systems exhibit high sensitivity to their initial conditions, where microscopic quantum fluctuations can significantly influence macroscopic observables. Understanding how quantum states may influence the behavior of nonlinear dynamic systems may open new avenues in controlling light-matter interactions. To explore this issue, we analyze the sensitivity of a fundamental quantum optical process - parametric oscillation - to quantum initializations. Focusing on optical parametric oscillators (OPOs), we demonstrate that the quantum statistics of arbitrary initial states are imprinted in the early-stage dynamics and can persist in the steady-state probabilities. We derive the "quantum sensitivity" of parametric oscillators, linking the initial quantum state to the system's steady-state outcomes, highlighting how losses and parametric gain govern the system's quantum sensitivity. Moreover, we show that these findings extend beyond OPOs to a broader class of nonlinear systems, including Josephson junction based superconducting circuits. Our work opens the way to a new class of experiments that can test the sensitivity of macroscopic systems to quantum initial conditions and offers a pathway for controlling systems with quantum degrees of freedom.
Related papers
- Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems [1.2499537119440245]
Quantum-enhanced sensors, which surpass the standard quantum limit (circuit) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields.
We introduce entanglement and preserve quantum information among many particles in a sensing circuit.
We propose a superconducting-entangled sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements.
arXiv Detail & Related papers (2024-10-15T00:48:01Z) - Quantum sensing in Kerr parametric oscillators [0.0]
We show how the analysis of the phase space structure of the classical limit of Kerr parametric oscillators can be used for determining control parameters.
We also explore how quantum sensing can benefit from excited-state quantum phase transitions, even in the absence of a conventional quantum phase transition.
arXiv Detail & Related papers (2024-07-19T18:00:00Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Exposing Hypersensitivity in Quantum Chaotic Dynamics [0.09545101073027092]
We show that unitary dynamics of a multi-qubit system can display hypersensitivity to initial state perturbation.
Our findings confirm that the observed hypersensitivity corresponds to commonly used signatures of quantum chaos.
arXiv Detail & Related papers (2023-07-27T08:07:40Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Critical sensing with a single bosonic mode without boson-boson interactions [3.8795402651871984]
We propose a simple critical quantum sensing scheme that requires neither of these conditions.
The scheme can be realized in different systems, e.g., ion traps and superconducting circuits.
arXiv Detail & Related papers (2023-05-28T07:45:34Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum metrology with boundary time crystals [0.0]
We show that a transition from a symmetry unbroken into a boundary time crystal phase reveals quantum-enhanced sensitivity quantified through quantum Fisher information.
Our scheme is indeed a demonstration of harnessing decoherence for achieving quantum-enhanced sensitivity.
arXiv Detail & Related papers (2023-01-05T15:15:38Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.