論文の概要: MLQM: Machine Learning Approach for Accelerating Optimal Qubit Mapping
- arxiv url: http://arxiv.org/abs/2412.03249v1
- Date: Wed, 04 Dec 2024 11:49:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:06:58.536864
- Title: MLQM: Machine Learning Approach for Accelerating Optimal Qubit Mapping
- Title(参考訳): MLQM:最適ビットマッピングの高速化のための機械学習アプローチ
- Authors: Wenjie Sun, Xiaoyu Li, Lianhui Yu, Zhigang Wang, Geng Chen, Guowu Yang,
- Abstract要約: 最適量子ビットマッピング(MLQM)の高速化のための機械学習手法を提案する。
まず,事前知識と機械学習に基づくグローバル検索空間の探索手法を提案する。
第2に,学習課題における有効サンプルの可用性の限界に対処するため,MLQMは新たなデータ拡張と改善手法を導入した。
- 参考スコア(独自算出の注目度): 13.958125071955742
- License:
- Abstract: Quantum circuit mapping is a critical process in quantum computing that involves adapting logical quantum circuits to adhere to hardware constraints, thereby generating physically executable quantum circuits. Current quantum circuit mapping techniques, such as solver-based methods, often encounter challenges related to slow solving speeds due to factors like redundant search iterations. Regarding this issue, we propose a machine learning approach for accelerating optimal qubit mapping (MLQM). First, the method proposes a global search space pruning scheme based on prior knowledge and machine learning, which in turn improves the solution efficiency. Second, to address the limited availability of effective samples in the learning task, MLQM introduces a novel data augmentation and refinement scheme, this scheme enhances the size and diversity of the quantum circuit dataset by exploiting gate allocation and qubit rearrangement. Finally, MLQM also further improves the solution efficiency by pruning the local search space, which is achieved through an adaptive dynamic adjustment mechanism of the solver variables. Compared to state-of-the-art qubit mapping approaches, MLQM achieves optimal qubit mapping with an average solving speed-up ratio of 1.79 and demonstrates an average advantage of 22% in terms of space complexity.
- Abstract(参考訳): 量子回路マッピング(Quantum circuit mapping)は、論理量子回路をハードウェアの制約に適合させ、物理的に実行可能な量子回路を生成する量子コンピューティングにおいて重要なプロセスである。
現在の量子回路マッピング技術、例えばソルバベースの手法は、冗長な探索繰り返しのような要因により、解の速度が遅くなるという問題にしばしば遭遇する。
本稿では,最適量子ビットマッピング(MLQM)の高速化を目的とした機械学習手法を提案する。
まず,事前知識と機械学習に基づくグローバル検索空間の探索手法を提案し,解の効率を向上する。
第二に、学習課題における有効サンプルの可用性の限界に対処するため、MLQMは、ゲートアロケーションとキュービットアレンジメントを利用して、量子回路データセットのサイズと多様性を向上させる新しいデータ拡張と改善スキームを導入した。
最後に、MLQMは、ソルバ変数の適応動的調整機構によって達成される局所探索空間を刈り取ることにより、解の効率をさらに向上する。
最先端の量子ビットマッピング手法と比較して、MLQMは平均解速アップ比1.79で最適な量子ビットマッピングを実現し、空間複雑性の点で平均22%の利点を示す。
関連論文リスト
- Scalable quantum dynamics compilation via quantum machine learning [7.31922231703204]
変分量子コンパイル(VQC)法は、高精度を維持しつつゲートコストを低減するために変分最適化を用いる。
1次元におけるシステムサイズと精度の両面で、我々のアプローチが最先端のコンパイル結果を上回ることが示されている(1$D)。
VQCを2次元(2次元)ストリップに準1次元処理で拡張し、標準的なトロッタライズ法よりも大きな資源優位性を示す。
論文 参考訳(メタデータ) (2024-09-24T18:00:00Z) - Quantum Circuit Optimization using Differentiable Programming of Tensor Network States [0.0]
このアルゴリズムは古典的なハードウェア上で動作し、浅い正確な量子回路を見つける。
すべての回路は、適切なCPU時間と控えめなメモリ要求下で高い状態忠実性を達成する。
論文 参考訳(メタデータ) (2024-08-22T17:48:53Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
この研究は、量子回路のコンパイルマッピング問題における臨界サブルーチンとして、マルチキュービットパスフィンディングに焦点を当てている。
本稿では,回路SWAPゲート深さに対して量子ハードウェア上で量子ビットを最適にナビゲートする二進整数線形計画法を用いてモデル化したアルゴリズムを提案する。
我々は、様々な量子ハードウェアレイアウトのアルゴリズムをベンチマークし、計算ランタイム、解SWAP深さ、累積SWAPゲート誤差率などの特性を評価した。
論文 参考訳(メタデータ) (2024-05-29T05:59:15Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
変分量子固有解法は、多くの応用に影響を及ぼすことのできる短期的アルゴリズムとして評価される。
収束性を改善するアルゴリズムや手法を見つけることは、VQEの短期ハードウェアの能力を加速するために重要である。
論文 参考訳(メタデータ) (2024-04-03T18:00:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - TIGER: Topology-aware Assignment using Ising machines Application to
Classical Algorithm Tasks and Quantum Circuit Gates [2.4047296366832307]
ゲートベースの量子コンピューティングでは、トポロジー的な方法でタスクをゲートにマップすることを目的とするマッピング問題が存在する。
既存のタスクアプローチは、物理最適化アルゴリズムのいずれかに基づいており、異なるスピードとソリューション品質のトレードオフを提供する。
本稿では,Ising マシンを用いてトポロジ対応の代入問題を解くアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-21T19:46:59Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。