論文の概要: Bounds in Wasserstein Distance for Locally Stationary Processes
- arxiv url: http://arxiv.org/abs/2412.03414v2
- Date: Wed, 27 Aug 2025 18:58:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-29 13:55:30.559923
- Title: Bounds in Wasserstein Distance for Locally Stationary Processes
- Title(参考訳): 局所定常過程におけるワッサーシュタイン距離の境界
- Authors: Jan Nino G. Tinio, Mokhtar Z. Alaya, Salim Bouzebda,
- Abstract要約: 本研究では,局所定常(LSP)データに適した条件付き確率分布推定器を提案する。
我々は、ワーッサーシュタイン計量の下で、NWに基づく条件付き確率推定器の収束率を厳格に設定する。
合成データセットの広範な数値シミュレーションを行い,実世界のデータを用いた実証検証を行った。
- 参考スコア(独自算出の注目度): 0.29771206318712146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Locally stationary (LSPs) constitute an essential modeling paradigm for capturing the nuanced dynamics inherent in time series data whose statistical characteristics, including mean and variance, evolve smoothly across time. In this paper, we introduce a novel conditional probability distribution estimator specifically tailored for LSPs, employing the Nadaraya-Watson (NW) kernel smoothing methodology. The NW estimator, a prominent local averaging technique, leverages kernel smoothing to approximate the conditional distribution of a response variable given its covariates. We rigorously establish convergence rates for the NW-based conditional probability estimator in the univariate setting under the Wasserstein metric, providing explicit bounds and conditions that guarantee optimal performance. Extending this theoretical framework, we subsequently generalize our analysis to the multivariate scenario using the sliced Wasserstein distance, an approach particularly advantageous in circumventing the computational and analytical challenges typically associated with high-dimensional settings. To corroborate our theoretical contributions, we conduct extensive numerical simulations on synthetic datasets and provide empirical validations using real-world data, highlighting the estimator's practical relevance and effectiveness in capturing intricate temporal dependencies and underscoring its relevance for analyzing complex nonstationary phenomena.
- Abstract(参考訳): 局所定常(LSP)は、平均と分散を含む統計特性が時間とともに円滑に変化する時系列データに固有のニュアンスドダイナミクスを捉えるための重要なモデリングパラダイムである。
本稿では,ナダラヤ・ワトソン(NW)カーネル平滑化手法を用いて,LSPに適した条件付き確率分布推定器を提案する。
局所平均化手法であるNW推定器は、カーネルの平滑化を利用して、その共変量から応答変数の条件分布を近似する。
我々は、ワッサーシュタイン計量の下での単変量設定において、NWに基づく条件付き確率推定器の収束率を厳密に設定し、最適性能を保証する明示的な境界と条件を提供する。
この理論の枠組みを拡張して、スライスされたワッサーシュタイン距離を用いて解析を多変量シナリオに一般化する。
理論的貢献を裏付けるために、我々は合成データセットの広範な数値シミュレーションを行い、実世界のデータを用いて実験的な検証を行い、複雑な時間的依存を捉え、複雑な非定常現象を解析するためのその妥当性を裏付ける推定器の実用的妥当性と有効性を強調した。
関連論文リスト
- Bounds in Wasserstein Distance for Locally Stationary Functional Time Series [2.180952057802427]
本研究では,局所定常関数時系列(LSFTS)の条件分布に対するNadaraya-Watson(NW)推定法について検討する。
スモールボール確率と混合条件下では、ワッサーシュタイン距離に対するLSFTSのNW推定器の収束速度を確立する。
論文 参考訳(メタデータ) (2025-04-08T21:49:58Z) - Sublinear Algorithms for Wasserstein and Total Variation Distances: Applications to Fairness and Privacy Auditing [7.81603404636933]
本稿では,ガウス分布のPDFとCDFを推定する汎用アルゴリズムフレームワークを提案する。
サブ線形空間W.r.t.を必要とするサンプルのストリームから, 分布のマージ可能な要約を計算する。
これにより、サンプルがストリームや複数のソースから到着している間に、Wasserstein と Total Variation (TV) の距離を2つの準ガウス距離で推定することができる。
論文 参考訳(メタデータ) (2025-03-10T18:57:48Z) - Constrained Sampling with Primal-Dual Langevin Monte Carlo [15.634831573546041]
この研究は、正規化定数まで既知の確率分布からサンプリングする問題を考察する。
一般非線形関数の期待値によって定義された統計的制約の集合を満たす。
我々は,目標分布とサンプルを同時に制約する離散時間原始二元Langevin Monte Carloアルゴリズム(PD-LMC)を提唱した。
論文 参考訳(メタデータ) (2024-11-01T13:26:13Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Sliced Wasserstein with Random-Path Projecting Directions [49.802024788196434]
本稿では,モンテカルロ予想推定のための高速サンプリングを行う最適化自由スライシング分布を提案する。
我々はランダムパススライシング分布(RPSD)とスライスされたワッサースタインの2つの変種、すなわちランダムパススライシングワッサースタイン(RPSW)とIWRPSW(Importance Weighted Random-Path Projection Sliced Wasserstein)を導出する。
論文 参考訳(メタデータ) (2024-01-29T04:59:30Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Fast Approximation of the Sliced-Wasserstein Distance Using
Concentration of Random Projections [19.987683989865708]
Sliced-Wasserstein distance (SW) は、機械学習アプリケーションでますます使われている。
本稿では,測度現象の集中を利用してSWを近似する新しい視点を提案する。
提案手法は多数のランダムなプロジェクションをサンプリングする必要はなく,通常のモンテカルロ近似と比較して正確かつ容易に利用できる。
論文 参考訳(メタデータ) (2021-06-29T13:56:19Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
新しい発散として条件輸送(CT)を提案し、償却されたCT(ACT)コストと近似します。
ACTは条件付き輸送計画の計算を補正し、計算が容易な非バイアスのサンプル勾配を持つ。
さまざまなベンチマークデータセットのジェネレーティブモデリングでは、既存のジェネレーティブ敵対ネットワークのデフォルトの統計距離をACTに置き換えることで、一貫してパフォーマンスを向上させることが示されています。
論文 参考訳(メタデータ) (2020-12-28T05:14:22Z) - Statistical analysis of Wasserstein GANs with applications to time
series forecasting [0.0]
We provide statistics theory for conditional and unconditional Wasserstein generative adversarial network (WGANs)。
修正ワッサーシュタイン型距離に対するWGAN推定器の過剰ベイズリスクの上限を証明した。
我々は、推定器の弱収束に関する文を形式化し、導出し、新しい観測のために信頼区間を発達させる。
論文 参考訳(メタデータ) (2020-11-05T19:45:59Z) - Conditional Density Estimation via Weighted Logistic Regressions [0.30458514384586394]
非均一プロセスモデルの一般密度と可能性関数の関連性を示すパラメトリック条件密度推定法を提案する。
最大推定値は重み付けされたロジスティック回帰によって得ることができ、ブロックワイズ交互化スキームと局所ケースコントロールサンプリングを組み合わせることで計算を著しく緩和することができる。
論文 参考訳(メタデータ) (2020-10-21T11:08:25Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
射影ロバスト(PR)OTは、2つの測度の間のOTコストを最大化するために、射影可能な$k$次元部分空間を選択する。
私たちの最初の貢献は、PRワッサーシュタイン距離のいくつかの基本的な統計的性質を確立することである。
次に、部分空間を最適化するのではなく平均化することにより、PRW距離の代替として積分PRワッサーシュタイン距離(IPRW)を提案する。
論文 参考訳(メタデータ) (2020-06-22T14:35:33Z) - Faster Wasserstein Distance Estimation with the Sinkhorn Divergence [0.0]
正方形ワッサーシュタイン距離(英: squared Wasserstein distance)は、非パラメトリックな設定における確率分布を比較する量である。
そこで本研究では,シンクホーンの発散量を用いて推定する手法を提案する。
滑らかな密度に対して、この推定器はサンプルの複雑さに匹敵するが、より高い正規化レベルが可能であることを示す。
論文 参考訳(メタデータ) (2020-06-15T06:58:16Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
無限級数のランダム化トランケーションに基づく潜在変数モデルに対して、ログ境界確率の非バイアス推定器とその勾配を導入する。
推定器を用いてトレーニングしたモデルは、同じ平均計算コストに対して、標準的な重要度サンプリングに基づくアプローチよりも優れたテストセット確率を与えることを示す。
論文 参考訳(メタデータ) (2020-04-01T11:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。