Nonlinear Operator Learning Using Energy Minimization and MLPs
- URL: http://arxiv.org/abs/2412.04596v1
- Date: Thu, 05 Dec 2024 20:19:16 GMT
- Title: Nonlinear Operator Learning Using Energy Minimization and MLPs
- Authors: Mats G. Larson, Carl Lundholm, Anna Persson,
- Abstract summary: We develop and evaluate a method for learning solution operators to nonlinear problems governed by partial differential equations.
The approach is based on a finite element discretization and aims at representing the solution operator by an iteration that takes latent variables as input.
- Score: 0.5898893619901381
- License:
- Abstract: We develop and evaluate a method for learning solution operators to nonlinear problems governed by partial differential equations. The approach is based on a finite element discretization and aims at representing the solution operator by an MLP that takes latent variables as input. The latent variables will typically correspond to parameters in a parametrization of input data such as boundary conditions, coefficients, and right-hand sides. The loss function is most often an energy functional and we formulate efficient parallelizable training algorithms based on assembling the energy locally on each element. For large problems, the learning process can be made more efficient by using only a small fraction of randomly chosen elements in the mesh in each iteration. The approach is evaluated on several relevant test cases, where learning the solution operator turns out to be beneficial compared to classical numerical methods.
Related papers
- Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs [0.0]
We introduce a method that combines neural operators, physics-informed machine learning, and standard numerical methods for solving PDEs.
We can parametrically solve partial differential equations in a data-free manner and provide accurate sensitivities.
Our study focuses on the steady-state heat equation within heterogeneous materials.
arXiv Detail & Related papers (2024-07-04T21:23:12Z) - Annealing-based approach to solving partial differential equations [0.0]
Discretizing a PDE yields a system of linear equations.
A general eigenvalue problem can be transformed into an optimization problem.
The proposed algorithm requires iterative computations.
arXiv Detail & Related papers (2024-06-25T08:30:00Z) - Transformers as Neural Operators for Solutions of Differential Equations with Finite Regularity [1.6874375111244329]
We first establish the theoretical groundwork that transformers possess the universal approximation property as operator learning models.
In particular, we consider three examples: the Izhikevich neuron model, the tempered fractional-order Leaky Integrate-and-Fire (LIFLIF) model, and the one-dimensional equation Euler problem.
arXiv Detail & Related papers (2024-05-29T15:10:24Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
We develop a novel contrastive pretraining framework that improves neural operator generalization across multiple governing equations simultaneously.
A combination of physics-informed system evolution and latent-space model output are anchored to input data and used in our distance function.
We find that physics-informed contrastive pretraining improves accuracy for the Fourier Neural Operator in fixed-future and autoregressive rollout tasks for the 1D and 2D Heat, Burgers', and linear advection equations.
arXiv Detail & Related papers (2024-01-29T17:32:22Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Automated differential equation solver based on the parametric
approximation optimization [77.34726150561087]
The article presents a method that uses an optimization algorithm to obtain a solution using the parameterized approximation.
It allows solving the wide class of equations in an automated manner without the algorithm's parameters change.
arXiv Detail & Related papers (2022-05-11T10:06:47Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Computational characteristics of feedforward neural networks for solving
a stiff differential equation [0.0]
We study the solution of a simple but fundamental stiff ordinary differential equation modelling a damped system.
We show that it is possible to identify preferable choices to be made for parameters and methods.
Overall we extend the current literature in the field by showing what can be done in order to obtain reliable and accurate results by the neural network approach.
arXiv Detail & Related papers (2020-12-03T12:22:24Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Learning with Differentiable Perturbed Optimizers [54.351317101356614]
We propose a systematic method to transform operations into operations that are differentiable and never locally constant.
Our approach relies on perturbeds, and can be used readily together with existing solvers.
We show how this framework can be connected to a family of losses developed in structured prediction, and give theoretical guarantees for their use in learning tasks.
arXiv Detail & Related papers (2020-02-20T11:11:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.