論文の概要: Socially-Informed Reconstruction for Pedestrian Trajectory Forecasting
- arxiv url: http://arxiv.org/abs/2412.04673v1
- Date: Thu, 05 Dec 2024 23:54:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:57:28.704913
- Title: Socially-Informed Reconstruction for Pedestrian Trajectory Forecasting
- Title(参考訳): Pedestrian Trajectory Forecasting に対する社会的インフォームド・コンストラクション
- Authors: Haleh Damirchi, Ali Etemad, Michael Greenspan,
- Abstract要約: 条件付き変分オートエンコーダに基づく軌道予測モジュールとともに再構成器を用いるモデルを提案する。
このモジュールは擬似トラジェクトリを生成し、トレーニングプロセス全体を通して拡張として使用します。
このモデルをさらに社会意識に導くために,より安定した軌道予測を支援する新たな社会的損失を提案する。
- 参考スコア(独自算出の注目度): 21.369444387333218
- License:
- Abstract: Pedestrian trajectory prediction remains a challenge for autonomous systems, particularly due to the intricate dynamics of social interactions. Accurate forecasting requires a comprehensive understanding not only of each pedestrian's previous trajectory but also of their interaction with the surrounding environment, an important part of which are other pedestrians moving dynamically in the scene. To learn effective socially-informed representations, we propose a model that uses a reconstructor alongside a conditional variational autoencoder-based trajectory forecasting module. This module generates pseudo-trajectories, which we use as augmentations throughout the training process. To further guide the model towards social awareness, we propose a novel social loss that aids in forecasting of more stable trajectories. We validate our approach through extensive experiments, demonstrating strong performances in comparison to state of-the-art methods on the ETH/UCY and SDD benchmarks.
- Abstract(参考訳): 歩行者の軌道予測は、特に社会的相互作用の複雑なダイナミクスのために、自律システムにとって依然として困難である。
正確な予測には、歩行者の以前の軌跡だけでなく、周囲の環境との相互作用も包括的に理解する必要がある。
社会的に効果的な表現を学習するために,コンストラクタと条件付き変分オートエンコーダを用いた軌道予測モジュールを用いたモデルを提案する。
このモジュールは擬似トラジェクトリを生成し、トレーニングプロセス全体を通して拡張として使用します。
このモデルをさらに社会意識に導くために,より安定した軌道予測を支援する新たな社会的損失を提案する。
本研究では,ETH/UCYおよびSDDベンチマークにおける最先端手法と比較して,高い性能を示すとともに,広範囲な実験により本手法の有効性を検証した。
関連論文リスト
- Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
我々のソリューションはArgoverse 2 end-to-end Forecasting Challengeで63.82 mAPfでランクインした。
私たちは、知覚から予測までエンドツーエンドのトレーニングを通じて、このタスクに取り組む現在のトレンドから離れ、代わりにモジュラーアプローチを使用します。
私たちは、昨年の優勝者より+17.1ポイント、今年の優勝者より+13.3ポイント、予測結果を+17.1ポイント上回る。
論文 参考訳(メタデータ) (2024-06-12T11:50:51Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
歩行者運動軌跡の予測は、自動運転車の経路計画と移動制御に不可欠である。
近年の深層学習に基づく予測手法は、主に軌跡履歴や歩行者間の相互作用などの情報を利用する。
本稿では,予測性能を向上させるためのグラフトランス構造を提案する。
論文 参考訳(メタデータ) (2024-01-10T01:50:29Z) - Distribution-aware Goal Prediction and Conformant Model-based Planning
for Safe Autonomous Driving [16.654299927694716]
本研究では,学習から学習までのタスクを,障害物認識と接地,分布認識の目標予測,モデルベース計画として再構築する。
CARLAシミュレータでは,CARNOVELベンチマークの最先端結果を報告する。
論文 参考訳(メタデータ) (2022-12-16T21:51:51Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - Goal-driven Self-Attentive Recurrent Networks for Trajectory Prediction [31.02081143697431]
人間の軌道予測は、自動運転車、社会認識ロボット、およびビデオ監視アプリケーションの主要な構成要素である。
本稿では,過去の観測位置のみに作用する軽量な注意型リカレントバックボーンを提案する。
我々はU-Netアーキテクチャに基づく共通のゴールモジュールを使用し、シーン準拠の目的地を予測するために意味情報を抽出する。
論文 参考訳(メタデータ) (2022-04-25T11:12:37Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - Pedestrian Trajectory Prediction with Convolutional Neural Networks [0.3787359747190393]
本稿では,新しい2次元畳み込みモデルを導入し,歩行者軌道予測への新たなアプローチを提案する。
この新モデルはリカレントモデルより優れており、ETHとTrajNetデータセットの最先端の結果が得られる。
また,歩行者の位置と強力なデータ拡張手法を効果的に表現するシステムを提案する。
論文 参考訳(メタデータ) (2020-10-12T15:51:01Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
生存可能なソリューションは、道路レーンのような静的な幾何学的文脈と、複数のアクターから生じる動的な社会的相互作用の両方を考慮しなければならない。
本稿では,解釈可能な幾何学的(アクター・レーン)と社会的(アクター・アクター)の関係を持つグラフに基づく注意的アプローチを提案する。
提案モデルでは,道路レーンやマルチアクターの相互作用を仮定的に,あるいは「何」かで予測できる。
論文 参考訳(メタデータ) (2020-08-24T17:49:30Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
本稿では,マルチエージェント軌道予測のためのジェネリック生成ニューラルシステムを提案する。
また、車両軌道予測に効率的なキネマティック拘束層を応用した。
提案システムは,軌道予測のための3つの公開ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-14T20:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。