論文の概要: Quadratic Modelings of Syndrome Decoding
- arxiv url: http://arxiv.org/abs/2412.04848v1
- Date: Fri, 06 Dec 2024 08:36:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:54:54.786848
- Title: Quadratic Modelings of Syndrome Decoding
- Title(参考訳): シンドローム復号の2次モデリング
- Authors: Alessio Caminata, Ryann Cartor, Alessio Meneghetti, Rocco Mora, Alex Pellegrini,
- Abstract要約: 本稿では,2次方程式系に対する有界重みと完全重み付きシンドローム復号問題(SDP)の高度化について述べる。
我々は,SDPインスタンスを$mathbbF_q$で方程式系に変換する新しい手法を導入し,それらの多様体の次元を徹底的に検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents enhanced reductions of the bounded-weight and exact-weight Syndrome Decoding Problem (SDP) to a system of quadratic equations. Over $\mathbb{F}_2$, we improve on a previous work and study the degree of regularity of the modeling of the exact weight SDP. Additionally, we introduce a novel technique that transforms SDP instances over $\mathbb{F}_q$ into systems of polynomial equations and thoroughly investigate the dimension of their varieties. Experimental results are provided to evaluate the complexity of solving SDP instances using our models through Gr\"obner bases techniques.
- Abstract(参考訳): 本稿では,2次方程式系に対する有界重みと完全重み付きシンドローム復号問題(SDP)の高度化について述べる。
$\mathbb{F}_2$以上では、以前の研究を改善し、正確なウェイト SDP のモデリングの正則性について研究する。
さらに,SDP インスタンスを$\mathbb{F}_q$ から多項式方程式系に変換する新しい手法を導入し,それらの多様体の次元を徹底的に検討する。
Gr\"obner bases法によるモデルを用いて,SDPインスタンスの解法を複雑に評価する実験結果を得た。
関連論文リスト
- Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis [30.713243690224207]
マルコフ決定過程(MDPs)において、バリュー・アット・リスク(Value-at-Risk)のような量子リスク尺度は、特定の結果に対するRLエージェントの嗜好をモデル化するための標準指標である。
本稿では,強い収束と性能保証を有するMDPにおける量子化最適化のための新しいQ-ラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-31T16:53:20Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
単次元モデル(Single-Index Models)は、植木構造における高次元回帰問題である。
我々は,統計的クエリ (SQ) と低遅延多項式 (LDP) フレームワークの両方において,計算効率のよいアルゴリズムが必ずしも$Omega(dkstar/2)$サンプルを必要とすることを示した。
論文 参考訳(メタデータ) (2024-03-08T18:50:19Z) - Wasserstein proximal operators describe score-based generative models
and resolve memorization [12.321631823103894]
We first formulate SGMs with terms of Wasserstein proximal operator (WPO)
We show that WPO describe the inductive bias of diffusion and score-based model。
本稿では,SGMの性能を劇的に向上させる,スコア関数の解釈可能なカーネルベースモデルを提案する。
論文 参考訳(メタデータ) (2024-02-09T03:33:13Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
文脈決定プロセス(CMDP)は、遷移カーネルと報酬関数がコンテキスト変数によってインデックス付けされた異なるMDPで時間とともに変化できる強化学習のクラスを記述する。
CMDPは、時間とともに変化する環境で多くの現実世界のアプリケーションをモデル化するための重要なフレームワークとして機能する。
CMDPを2つの線形関数近似モデルで検討する: 文脈変化表現とすべての文脈に対する共通線形重み付きモデルIと、すべての文脈に対する共通表現と文脈変化線形重み付きモデルIIである。
論文 参考訳(メタデータ) (2024-02-05T03:25:04Z) - A Provably Efficient Model-Free Posterior Sampling Method for Episodic
Reinforcement Learning [50.910152564914405]
強化学習のための既存の後方サンプリング手法は、モデルベースであるか、線形MDPを超える最悪の理論的保証がないかによって制限される。
本稿では,理論的保証を伴うより一般的な補足的強化学習問題に適用可能な,後部サンプリングのモデルフリーな新しい定式化を提案する。
論文 参考訳(メタデータ) (2022-08-23T12:21:01Z) - PAC Reinforcement Learning for Predictive State Representations [60.00237613646686]
部分的に観察可能な力学系におけるオンライン強化学習(RL)について検討する。
我々は、他のよく知られたモデルをキャプチャする表現モデルである予測状態表現(PSR)モデルに焦点を当てる。
我々は,サンプル複雑性のスケーリングにおいて,ほぼ最適なポリシを学習可能な,PSRのための新しいモデルベースアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-07-12T17:57:17Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - CP-MDP: A CANDECOMP-PARAFAC Decomposition Approach to Solve a Markov
Decision Process Multidimensional Problem [21.79259092920586]
テンソル分解法を用いて多次元問題に対するMDPソルバを開発する。
われわれのアプローチは、メモリを大幅に減らして、より大きな問題を計算できることを示した。
論文 参考訳(メタデータ) (2021-02-27T21:33:19Z) - Generative Archimedean Copulas [27.705956325584026]
多次元累積分布関数(CDF)をコーミュラ形式で学習するための新しい生成モデリング手法を提案する。
我々はアルキメデスと階層的アルキメデスのコプラと呼ばれるある種のコプラを、その相似表現と異なる尾の依存関係をモデル化する能力で人気があると考えている。
論文 参考訳(メタデータ) (2021-02-22T20:45:40Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z) - Actor-Critic Algorithm for High-dimensional Partial Differential
Equations [1.5644600570264835]
我々は高次元非線形放物型偏微分方程式を解くためのディープラーニングモデルを開発した。
BSDEのマルコフ的特性は、ニューラルネットワークアーキテクチャの設計に利用されています。
PDEのいくつかのよく知られたクラスを解くことで、これらの改善を実証する。
論文 参考訳(メタデータ) (2020-10-07T20:53:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。