Enhancing fidelity in teleportation of a two-qubit state via a quantum communication channel formed by spin-1/2 Ising-Heisenberg trimer chains due to a magnetic field
- URL: http://arxiv.org/abs/2412.05113v2
- Date: Mon, 09 Dec 2024 07:17:01 GMT
- Title: Enhancing fidelity in teleportation of a two-qubit state via a quantum communication channel formed by spin-1/2 Ising-Heisenberg trimer chains due to a magnetic field
- Authors: Jozef Strecka, Fadwa Benabdallah, Mohammed Daoud,
- Abstract summary: Two independent spin-1/2 Ising-Heisenberg trimer chains provide an effective platform for the quantum teleportation of any entangled two-qubit state.<n>The efficiency of quantum teleportation of arbitrary entangled two-qubit state can be significantly enhanced by moderate magnetic fields.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate that two independent spin-1/2 Ising-Heisenberg trimer chains provide an effective platform for the quantum teleportation of any entangled two-qubit state through the quantum communication channel formed by two Heisenberg dimers. The reliability of this quantum channel is assessed by comparing the concurrences, which quantify a strength of the bipartite entanglement of the initial input state and the readout output state. Additionally, we rigorously calculate quantities fidelity and average fidelity to evaluate the quality of the teleportation protocol depending on temperature and magnetic field. It is evidenced that the efficiency of quantum teleportation of arbitrary entangled two-qubit state through this quantum communication channel can be significantly enhanced by moderate magnetic fields. This enhancement can be attributed to the magnetic-field-driven transition from a quantum antiferromagnetic phase to a quantum ferrimagnetic phase, which supports realization of a fully entangled quantum channel suitable for efficient quantum teleportation. The polymeric trimer chains Cu3(P2O6OH)2 are proposed as an experimental resource of this quantum communication channel, which provides an efficient platform for realization of the quantum teleportation up to moderate temperatures 40 K and extremely high magnetic fields 80 T.
Related papers
- Capability of anti-degradable quantum channel with additional entanglement [0.0]
We show that a type of quantum channel known as the anti-degradable one-mode Gaussian channel can be activated" to transmit quantum information.
Beyond its theoretical implications, this activation can also be realized in practical systems.
arXiv Detail & Related papers (2025-01-12T15:17:00Z) - Teleportation and Entanglement Swapping of Continuous Quantum Variables of Microwave Radiation [0.0]
Continuous-variable (CV) entanglement can be efficiently and unconditionally produced by squeezing light in a nonlinear medium.
Here, we demonstrate three key elements of CV-based microwave quantum communication.
Such hardware-efficient CV entanglement building blocks could enable wide-ranging applications in quantum computation, quantum cryptography, and quantum communication.
arXiv Detail & Related papers (2025-01-09T19:20:59Z) - Quantum teleportation with dissimilar quantum dots over a hybrid quantum network [24.574514809868866]
Photonic quantum information processing in quantum networks lays the foundation for cloud quantum computing, secure communication, and the realization of a global quantum internet.
Here, we demonstrate the exploitation of distinct quantum emitters to implement all-photonic quantum teleportation among distant parties.
The achieved teleportation state fidelity reaches up to 82+-1%, above the classical limit by more than 10 standard deviations.
arXiv Detail & Related papers (2024-11-19T10:16:58Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - A Study on Thermal Quantum Resources and Probabilistic Teleportation in Spin-1/2 Heisenberg XYZ+DM+KSEA Model under Variable Zeeman Splitting [0.8136541584281987]
Investigation of measures of quantum coherence and quantum correlation in the spin-1/2 Heisenberg XYZ model with added Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions.
arXiv Detail & Related papers (2024-05-25T16:13:40Z) - Optimized protocols for duplex quantum transduction [1.6437645274005803]
Quantum transducers convert quantum signals through hybrid interfaces of physical platforms in quantum networks.
We propose rate regions to characterize the performance of duplex quantum transduction.
arXiv Detail & Related papers (2023-05-25T01:49:16Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Precision tomography of a three-qubit donor quantum processor in silicon [38.42250061908039]
Nuclear spins were among the first physical platforms to be considered for quantum information processing.
We demonstrate universal quantum logic operations using a pair of ion-implanted 31P donor nuclei in a silicon nanoelectronic device.
arXiv Detail & Related papers (2021-06-06T10:30:38Z) - Heralded entanglement distribution between two absorptive quantum
memories [7.245400332036547]
Experimental demonstration of heralded entanglement between absorptive quantum memories.
Quantum repeaters based on absorptive quantum memories can overcome limitations.
arXiv Detail & Related papers (2021-01-13T09:17:10Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Adiabatic quantum state transfer in a semiconductor quantum-dot spin
chain [0.0]
We present evidence of adiabatic quantum-state transfer in semiconductor quantum-dot electron spins.
Based on simulations, we estimate that the probability to correctly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95.
arXiv Detail & Related papers (2020-07-08T03:01:27Z) - Stable transmission of high-dimensional quantum states over a 2 km
multicore fiber [45.82374977939355]
We prove how path encoded high-dimensional quantum states can be reliably transmitted over a 2 km long multicore fiber.
We take advantage of a phase-locked loop system guaranteeing a stable interferometric detection.
arXiv Detail & Related papers (2020-01-30T09:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.