論文の概要: DECO: Life-Cycle Management of Enterprise-Grade Chatbots
- arxiv url: http://arxiv.org/abs/2412.06099v1
- Date: Sun, 08 Dec 2024 23:00:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 23:11:44.157027
- Title: DECO: Life-Cycle Management of Enterprise-Grade Chatbots
- Title(参考訳): DECO: エンタープライズグレードチャットボットのライフサイクル管理
- Authors: Yiwen Zhu, Mathieu Demarne, Kai Deng, Wenjing Wang, Nutan Sahoo, Divya Vermareddy, Hannah Lerner, Yunlei Lu, Swati Bararia, Anjali Bhavan, William Zhang, Xia Li, Katherine Lin, Miso Cilimdzic, Subru Krishnan,
- Abstract要約: DECOはエンタープライズグレードのチャットボットを開発し、デプロイし、管理するための包括的なフレームワークである。
効率的でカスタマイズされた検索拡張世代(RAG)アルゴリズムをサポートする。
また、構造化されていないインシデントログをユーザフレンドリで構造化されたガイドに変換するための堅牢なメカニズムも組み込まれている。
- 参考スコア(独自算出の注目度): 9.908567982584815
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Software engineers frequently grapple with the challenge of accessing disparate documentation and telemetry data, including Troubleshooting Guides (TSGs), incident reports, code repositories, and various internal tools developed by multiple stakeholders. While on-call duties are inevitable, incident resolution becomes even more daunting due to the obscurity of legacy sources and the pressures of strict time constraints. To enhance the efficiency of on-call engineers (OCEs) and streamline their daily workflows, we introduced DECO -- a comprehensive framework for developing, deploying, and managing enterprise-grade chatbots tailored to improve productivity in engineering routines. This paper details the design and implementation of the DECO framework, emphasizing its innovative NL2SearchQuery functionality and a hierarchical planner. These features support efficient and customized retrieval-augmented-generation (RAG) algorithms that not only extract relevant information from diverse sources but also select the most pertinent toolkits in response to user queries. This enables the addressing of complex technical questions and provides seamless, automated access to internal resources. Additionally, DECO incorporates a robust mechanism for converting unstructured incident logs into user-friendly, structured guides, effectively bridging the documentation gap. Feedback from users underscores DECO's pivotal role in simplifying complex engineering tasks, accelerating incident resolution, and bolstering organizational productivity. Since its launch in September 2023, DECO has demonstrated its effectiveness through extensive engagement, with tens of thousands of interactions from hundreds of active users across multiple organizations within the company.
- Abstract(参考訳): ソフトウェアエンジニアは、トラブルシューティングガイド(TSG)、インシデントレポート、コードリポジトリ、複数の利害関係者によって開発されたさまざまな内部ツールなど、さまざまなドキュメントやテレメトリデータにアクセスするという課題に、しばしば直面する。
オンコールの義務は避けられないが、レガシーソースの曖昧さと厳格な時間制約のプレッシャーにより、インシデント解決はさらに困難になる。
オンコールエンジニア(OCE)の効率を高め、日々のワークフローを合理化するために、エンジニアリングルーチンの生産性向上に適したエンタープライズグレードのチャットボットを開発し、デプロイし、管理するための包括的なフレームワークであるDECを導入しました。
本稿では,DECフレームワークの設計と実装について詳述し,その革新的なNL2SearchQuery機能と階層型プランナを強調した。
これらの機能は、多様なソースから関連情報を抽出するだけでなく、ユーザクエリに応答して最も関連するツールキットを選択する、効率的でカスタマイズされた検索拡張世代(RAG)アルゴリズムをサポートする。
これにより、複雑な技術的な問題への対処が可能になり、内部リソースへのシームレスで自動化されたアクセスを提供する。
さらに、DeCOには、構造化されていないインシデントログをユーザフレンドリで構造化されたガイドに変換するための堅牢なメカニズムが組み込まれており、ドキュメントのギャップを効果的に埋めている。
ユーザからのフィードバックは、複雑なエンジニアリングタスクの簡素化、インシデント解決の加速、組織の生産性向上におけるDECの重要な役割を強調している。
2023年9月のローンチ以来、DeCOは大規模なエンゲージメントを通じて、同社内の複数の組織で数百のアクティブユーザから数万のインタラクションによって、その効果を実証してきた。
関連論文リスト
- Orchestrating Agents and Data for Enterprise: A Blueprint Architecture for Compound AI [11.859180018313147]
企業アプリケーションのためのエージェントとデータをオーケストレーションするための複合AIシステムのための「青写真アーキテクチャ」を提案する。
エンタープライズにおける既存のプロプライエタリなモデルとAPIは、'エージェントレジストリ'で定義された'エージェント'にマップされる。
エージェントは、さまざまなモダリティのエンタープライズデータを同じように登録する'データレジストリ'を通じて、プロプライエタリなデータを利用することができる。
論文 参考訳(メタデータ) (2025-04-10T22:19:41Z) - RoboFactory: Exploring Embodied Agent Collaboration with Compositional Constraints [27.467048581838405]
埋め込み型マルチエージェントシステムに対する構成制約の概念を提案する。
異なるタイプの制約に合わせたインターフェースを設計し、物理的世界とのシームレスな対話を可能にします。
マルチエージェント操作のための最初のベンチマークであるRoboFactoryを紹介した。
論文 参考訳(メタデータ) (2025-03-20T17:58:38Z) - Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI生成コンテンツは、ネットワークエッジで協調的なMobile AIGC Service Providers(MASP)を編成して、リソース制約のあるユーザにユビキタスでカスタマイズされたコンテンツを提供することができる。
このようなパラダイムは2つの大きな課題に直面している: 1) 生のプロンプトは、ユーザーが特定のAIGCモデルで経験していないために、しばしば生成品質が低下する。
本研究では,Large Language Model (LLM) を利用してカスタマイズしたプロンプトコーパスを生成する対話型プロンプトエンジニアリング機構を開発し,政策模倣に逆強化学習(IRL)を用いる。
論文 参考訳(メタデータ) (2025-02-17T03:05:20Z) - KIMAs: A Configurable Knowledge Integrated Multi-Agent System [46.91903900679881]
本技術報告では,これらの課題に対処するための知識統合型マルチエージェントシステムKIMAについて述べる。
私たちの作業は、大規模言語モデルを現実世界の環境に展開するためのスケーラブルなフレームワークを提供します。
論文 参考訳(メタデータ) (2025-02-13T18:51:12Z) - Agentic AI-Driven Technical Troubleshooting for Enterprise Systems: A Novel Weighted Retrieval-Augmented Generation Paradigm [0.0]
本稿では,企業の技術的トラブルシューティングに適したRAG(Weighted Retrieval-Augmented Generation)フレームワーク上に構築されたエージェントAIソリューションを提案する。
製品マニュアル、内部知識ベース、FAQ、トラブルシューティングガイドなどの検索ソースを動的に重み付けすることで、最も関連性の高いデータを優先順位付けする。
大規模エンタープライズデータセットに関する予備評価では、トラブルシューティングの精度を改善し、解決時間を短縮し、さまざまな技術的課題に適応する上で、フレームワークの有効性が示されている。
論文 参考訳(メタデータ) (2024-12-16T17:32:38Z) - HierTOD: A Task-Oriented Dialogue System Driven by Hierarchical Goals [4.630232280155836]
タスク指向対話 (Task-Oriented Dialogue, TOD) は、自然言語による対話を通じてタスクの完了を支援するシステムである。
本稿では,階層的な目標によって駆動されるエンタープライズTODシステムであるHierTODを紹介する。
システム実装では,情報収集のためのスロットフィリングとタスク実行のためのステップバイステップガイダンスという,2つのTODパラダイムを統一する。
論文 参考訳(メタデータ) (2024-11-11T17:28:19Z) - CRMArena: Understanding the Capacity of LLM Agents to Perform Professional CRM Tasks in Realistic Environments [90.29937153770835]
CRMArenaは、プロフェッショナルな作業環境に根ざした現実的なタスクにおいて、AIエージェントを評価するために設計されたベンチマークである。
現状のLDMエージェントはReActプロンプトのタスクの40%以下で成功し,機能呼び出し能力でも55%以下であった。
この結果から,実環境に展開する関数呼び出しやルールフォローにおいて,エージェント機能の向上の必要性が示唆された。
論文 参考訳(メタデータ) (2024-11-04T17:30:51Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-24T19:34:04Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Towards a RAG-based Summarization Agent for the Electron-Ion Collider [0.5504260452953508]
A Retrieval Augmented Generation (RAG)ベースのEIC用要約AI(RAGS4EIC)が開発中である。
このAIエージェントは情報を凝縮するだけでなく、関連する応答を効果的に参照する。
まず、関連するすべての実験情報を含む包括的ベクトルデータベースを問合せし、次に、Large Language Model(LLM)を用いて、ユーザクエリと検索データに基づく引用に富んだ簡潔な要約を生成する。
論文 参考訳(メタデータ) (2024-03-23T05:32:46Z) - Experiential Co-Learning of Software-Developing Agents [83.34027623428096]
大規模言語モデル(LLM)は、特にソフトウェア開発において、様々な領域に大きな変化をもたらした。
本稿では,新しいLLM学習フレームワークであるExperiential Co-Learningを紹介する。
実験では、このフレームワークにより、エージェントは、目に見えないソフトウェア開発タスクをより効果的に対処できることを示した。
論文 参考訳(メタデータ) (2023-12-28T13:50:42Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDevはチャットを利用したソフトウェア開発フレームワークで、特別なエージェントがコミュニケーション方法についてガイドされる。
これらのエージェントは、統一された言語ベースのコミュニケーションを通じて、設計、コーディング、テストフェーズに積極的に貢献する。
論文 参考訳(メタデータ) (2023-07-16T02:11:34Z) - Flexible Job Shop Scheduling via Dual Attention Network Based
Reinforcement Learning [73.19312285906891]
フレキシブルなジョブショップスケジューリング問題(FJSP)では、複数のマシンで操作を処理でき、操作とマシンの間の複雑な関係が生じる。
近年, 深層強化学習(DRL)を用いて, FJSP解決のための優先派遣規則(PDR)を学習している。
本稿では,Deep機能抽出のための自己注意モデルと,スケーラブルな意思決定のためのDRLの利点を生かした,エンドツーエンド学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-09T01:35:48Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
pRotOtypeal taSk corrElaTion guided gaTingAnism (ROSETTA)による連続物体検出のためのフレキシブルなフレームワークを提案する。
具体的には、統一されたフレームワークはすべてのタスクで共有され、タスク対応ゲートは特定のタスクのサブモデルを自動的に選択するために導入されます。
COCO-VOC、KITTI-Kitchen、VOCのクラスインクリメンタル検出、および4つのタスクの逐次学習の実験により、ROSETTAが最先端のパフォーマンスを得ることが示された。
論文 参考訳(メタデータ) (2022-05-06T07:31:28Z) - Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data
Programming [77.38174112525168]
私たちは、WS 学習パイプラインの全体的な生産性を、一般的な WS 監督アプローチと比較して平均20%(最大 47% のタスク)改善する、エンドツーエンドのインタラクティブなスーパービジョンシステムである Nemo を紹介します。
論文 参考訳(メタデータ) (2022-03-02T19:57:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。