Feature Group Tabular Transformer: A Novel Approach to Traffic Crash Modeling and Causality Analysis
- URL: http://arxiv.org/abs/2412.06825v2
- Date: Sat, 11 Jan 2025 16:21:29 GMT
- Title: Feature Group Tabular Transformer: A Novel Approach to Traffic Crash Modeling and Causality Analysis
- Authors: Oscar Lares, Hao Zhen, Jidong J. Yang,
- Abstract summary: This study introduces a novel approach to predicting collision types by utilizing a comprehensive dataset fused from multiple sources.
Central to our approach is the development of a Feature Group Tabular Transformer (FGTT) model, which organizes disparate data into meaningful feature groups.
The FGTT model is benchmarked against widely used tree ensemble models, including Random Forest, XGBoost, and CatBoost, demonstrating superior predictive performance.
- Score: 0.40964539027092917
- License:
- Abstract: Reliable and interpretable traffic crash modeling is essential for understanding causality and improving road safety. This study introduces a novel approach to predicting collision types by utilizing a comprehensive dataset fused from multiple sources, including weather data, crash reports, high-resolution traffic information, pavement geometry, and facility characteristics. Central to our approach is the development of a Feature Group Tabular Transformer (FGTT) model, which organizes disparate data into meaningful feature groups, represented as tokens. These group-based tokens serve as rich semantic components, enabling effective identification of collision patterns and interpretation of causal mechanisms. The FGTT model is benchmarked against widely used tree ensemble models, including Random Forest, XGBoost, and CatBoost, demonstrating superior predictive performance. Furthermore, model interpretation reveals key influential factors, providing fresh insights into the underlying causality of distinct crash types.
Related papers
- Enhancing Crash Frequency Modeling Based on Augmented Multi-Type Data by Hybrid VAE-Diffusion-Based Generative Neural Networks [13.402051372401822]
A key challenge in crash frequency modelling is the prevalence of excessive zero observations.
We propose a hybrid VAE-Diffusion neural network, designed to reduce zero observations.
We assess the synthetic data quality generated by this model through metrics like similarity, accuracy, diversity, and structural consistency.
arXiv Detail & Related papers (2025-01-17T07:53:27Z) - MSCT: Addressing Time-Varying Confounding with Marginal Structural Causal Transformer for Counterfactual Post-Crash Traffic Prediction [24.3907895281179]
This paper presents a novel deep learning model designed for counterfactual post-crash traffic prediction.
The proposed model is treatment-aware, with a specific focus on comprehending and predicting traffic speed under hypothetical crash intervention strategies.
The model is validated using both synthetic and real-world data, demonstrating that MSCT outperforms state-of-the-art models in multi-step-ahead prediction performance.
arXiv Detail & Related papers (2024-07-19T06:42:41Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Exploring Factors Affecting Pedestrian Crash Severity Using TabNet: A
Deep Learning Approach [0.0]
This study presents the first investigation of pedestrian crash severity using the TabNet model.
Through the application of TabNet to a comprehensive dataset from Utah covering the years 2010 to 2022, we uncover intricate factors contributing to pedestrian crash severity.
arXiv Detail & Related papers (2023-11-29T19:44:52Z) - CausalAgents: A Robustness Benchmark for Motion Forecasting using Causal
Relationships [8.679073301435265]
We construct a new benchmark for evaluating and improving model robustness by applying perturbations to existing data.
We use these labels to perturb the data by deleting non-causal agents from the scene.
Under non-causal perturbations, we observe a $25$-$38%$ relative change in minADE as compared to the original.
arXiv Detail & Related papers (2022-07-07T21:28:23Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.