論文の概要: Gearing Gaussian process modeling and sequential design towards stochastic simulators
- arxiv url: http://arxiv.org/abs/2412.07306v1
- Date: Tue, 10 Dec 2024 08:37:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:36:27.422386
- Title: Gearing Gaussian process modeling and sequential design towards stochastic simulators
- Title(参考訳): ゲーリングガウス過程モデリングと確率シミュレータへの逐次設計
- Authors: Mickael Binois, Arindam Fadikar, Abby Stevens,
- Abstract要約: 本章では、複素雑音の存在下でのガウス過程モデリングの特定の側面について述べる。
標準ホモスセダティックモデルから、文献からの様々な一般化が提示される。
- 参考スコア(独自算出の注目度): 1.024113475677323
- License:
- Abstract: This chapter presents specific aspects of Gaussian process modeling in the presence of complex noise. Starting from the standard homoscedastic model, various generalizations from the literature are presented: input varying noise variance, non-Gaussian noise, or quantile modeling. These approaches are compared in terms of goal, data availability and inference procedure. A distinction is made between methods depending on their handling of repeated observations at the same location, also called replication. The chapter concludes with the corresponding adaptations of the sequential design procedures. These are illustrated in an example from epidemiology.
- Abstract(参考訳): 本章では、複素雑音の存在下でのガウス過程モデリングの特定の側面について述べる。
標準的なホモシステマティックモデルから始め、入力の異なるノイズ分散、非ガウスノイズ、量子モデリングなど、文献からの様々な一般化が提示される。
これらのアプローチは、目標、データ可用性、推論手順の観点から比較される。
複製と呼ばれる同じ場所で繰り返される観察の処理によって、メソッド間で区別が行われる。
この章は、シーケンシャルな設計手順の対応する適応で締めくくられる。
これらは疫学の例に示されている。
関連論文リスト
- Bayesian Inference of General Noise Model Parameters from Surface Code's Syndrome Statistics [0.0]
表面符号のテンソルネットワークシミュレータを統合する一般雑音モデルベイズ推論法を提案する。
雑音パラメータが一定であり変化しない定常雑音に対しては,マルコフ連鎖モンテカルロに基づく手法を提案する。
より現実的な状況である時間変化ノイズに対しては、シーケンシャルなモンテカルロに基づく別の手法を導入する。
論文 参考訳(メタデータ) (2024-06-13T10:26:04Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Variational Elliptical Processes [1.5703073293718952]
本稿では,非パラメトリック確率モデルの一群である楕円過程と,学生の後続過程について述べる。
我々はこの混合分布をスプライン正規化フローとしてパラメータ化し、変分推論を用いて訓練する。
提案した変分後部の形状は,大規模な問題に適用可能なスパース変分楕円過程を可能にする。
論文 参考訳(メタデータ) (2023-11-21T12:26:14Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
経験的性能を示すスコアベース生成モデル(SGM)を紹介する。
現在のSGMは、そのデータが平坦な幾何学を持つユークリッド多様体上で支えられているという前提を定めている。
これにより、ロボット工学、地球科学、タンパク質モデリングの応用にこれらのモデルを使用することができない。
論文 参考訳(メタデータ) (2022-02-06T11:57:39Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
本稿では, 医療データを調和させる構造因果モデル (SCM) に対して, 反実的推論を行う正規化フローに基づく手法を提案する。
我々は,この手法が最先端のアルゴリズムよりもドメイン間一般化に寄与することを示すために,複数の,大規模な実世界の医療データセットを評価した。
論文 参考訳(メタデータ) (2021-06-12T19:57:35Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Recyclable Gaussian Processes [0.0]
ガウス過程に対する独立な変分近似をリサイクルするための新しい枠組みを提案する。
主な貢献は、ガウス過程の辞書が与えられた変分アンサンブルの構築である。
私たちのフレームワークは回帰、分類、異種タスクを可能にします。
論文 参考訳(メタデータ) (2020-10-06T09:01:55Z) - Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating
Back-Propagation for Saliency Detection [54.98042023365694]
本稿では,ノイズを考慮したエンコーダ・デコーダ・フレームワークを提案する。
提案モデルはニューラルネットワークによってパラメータ化された2つのサブモデルから構成される。
論文 参考訳(メタデータ) (2020-07-23T18:47:36Z) - Adversarial System Variant Approximation to Quantify Process Model
Generalization [2.538209532048867]
プロセスマイニングでは、プロセスモデルはイベントログから抽出され、複数の品質次元を用いて一般的に評価される。
この問題を解決するために,Adversarial System Variant Approximation (AVATAR)と呼ばれる新しいディープラーニングベースの手法が提案されている。
論文 参考訳(メタデータ) (2020-03-26T22:06:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。