論文の概要: DG-Mamba: Robust and Efficient Dynamic Graph Structure Learning with Selective State Space Models
- arxiv url: http://arxiv.org/abs/2412.08160v3
- Date: Mon, 16 Dec 2024 07:44:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:56:08.355496
- Title: DG-Mamba: Robust and Efficient Dynamic Graph Structure Learning with Selective State Space Models
- Title(参考訳): DG-Mamba:選択状態空間モデルを用いたロバストで効率的な動的グラフ構造学習
- Authors: Haonan Yuan, Qingyun Sun, Zhaonan Wang, Xingcheng Fu, Cheng Ji, Yongjian Wang, Bo Jin, Jianxin Li,
- Abstract要約: 選択状態空間モデル(Mamba)を用いた動的グラフ構造学習フレームワークを提案する。
我々のフレームワークは、敵攻撃に対する最先端のベースラインよりも優れている。
- 参考スコア(独自算出の注目度): 16.435352947791923
- License:
- Abstract: Dynamic graphs exhibit intertwined spatio-temporal evolutionary patterns, widely existing in the real world. Nevertheless, the structure incompleteness, noise, and redundancy result in poor robustness for Dynamic Graph Neural Networks (DGNNs). Dynamic Graph Structure Learning (DGSL) offers a promising way to optimize graph structures. However, aside from encountering unacceptable quadratic complexity, it overly relies on heuristic priors, making it hard to discover underlying predictive patterns. How to efficiently refine the dynamic structures, capture intrinsic dependencies, and learn robust representations, remains under-explored. In this work, we propose the novel DG-Mamba, a robust and efficient Dynamic Graph structure learning framework with the Selective State Space Models (Mamba). To accelerate the spatio-temporal structure learning, we propose a kernelized dynamic message-passing operator that reduces the quadratic time complexity to linear. To capture global intrinsic dynamics, we establish the dynamic graph as a self-contained system with State Space Model. By discretizing the system states with the cross-snapshot graph adjacency, we enable the long-distance dependencies capturing with the selective snapshot scan. To endow learned dynamic structures more expressive with informativeness, we propose the self-supervised Principle of Relevant Information for DGSL to regularize the most relevant yet least redundant information, enhancing global robustness. Extensive experiments demonstrate the superiority of the robustness and efficiency of our DG-Mamba compared with the state-of-the-art baselines against adversarial attacks.
- Abstract(参考訳): 動的グラフは、現実世界に広く存在する時空間進化パターンを相互に表わす。
それでも、構造の不完全性、ノイズ、冗長性は、動的グラフニューラルネットワーク(DGNN)のロバスト性を損なう。
動的グラフ構造学習(DGSL)は、グラフ構造を最適化する有望な方法を提供する。
しかし、容認できない二次的な複雑さに遭遇する以外は、過度にヒューリスティックな先入観に依存しており、基礎となる予測パターンを見つけることは困難である。
動的構造を効率的に洗練し、固有の依存関係を捕捉し、堅牢な表現を学習する方法は、まだ解明されていない。
本研究では,Selective State Space Models (Mamba) を用いた動的グラフ構造学習フレームワーク DG-Mamba を提案する。
時空間構造学習の高速化を目的として,2次時間複雑性を線形化する動的メッセージパッシング演算子を提案する。
グローバルな固有ダイナミクスを捉えるため,状態空間モデルを用いた自己完結型システムとして動的グラフを確立する。
クロススナップショットグラフの隣接度でシステムの状態を識別することにより、選択スナップショットスキャンにより長距離依存性をキャプチャできる。
学習された動的構造をより表現力のあるものにするために,DGSL の自己教師型関連情報原理を提案し,最も関連性の高い最小冗長な情報を規則化し,世界的ロバスト性を高める。
我々のDG-Mambaの強靭性と効率性は、敵対的攻撃に対する最先端のベースラインに比べて優れていた。
関連論文リスト
- Information propagation dynamics in Deep Graph Networks [1.8130068086063336]
Deep Graph Networks(DGN)は、構造化情報の処理と学習が可能なディープラーニングモデルのファミリとして登場した。
この論文は、静的グラフと動的グラフのためのDGNの内部の情報伝達のダイナミクスを考察し、動的システムとしての設計に焦点をあてる。
論文 参考訳(メタデータ) (2024-10-14T12:55:51Z) - Informative Subgraphs Aware Masked Auto-Encoder in Dynamic Graphs [1.3571543090749625]
本稿では,動的グラフの進化を導く情報サブグラフを生成するための制約付き確率的生成モデルを提案する。
DyGISによって同定された情報サブグラフは、動的グラフマスキングオートエンコーダ(DGMAE)の入力として機能する。
論文 参考訳(メタデータ) (2024-09-14T02:16:00Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - A survey of dynamic graph neural networks [26.162035361191805]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから効果的にマイニングし学習するための強力なツールとして登場した。
本稿では,基本的な概念,鍵となる技術,そして最先端の動的GNNモデルについて概観する。
論文 参考訳(メタデータ) (2024-04-28T15:07:48Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
本稿では,動的グラフ表現学習のための新しいフレームワークであるRecurrent Structure-Reinforced Graph Transformer (RSGT)を紹介する。
RSGTは、繰り返し学習パラダイムを通じて、グラフトポロジと進化力学の両方をコードする時間ノード表現をキャプチャする。
離散動的グラフ表現学習におけるRSGTの優れた性能を示し、動的リンク予測タスクにおける既存の手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-04-20T04:12:50Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Self-Supervised Temporal Graph learning with Temporal and Structural Intensity Alignment [53.72873672076391]
時間グラフ学習は、動的情報を用いたグラフベースのタスクのための高品質な表現を生成することを目的としている。
本稿では,時間的および構造的情報の両方を抽出する時間的グラフ学習のためのS2Tという自己教師型手法を提案する。
S2Tは、いくつかのデータセットにおける最先端の競合と比較して、少なくとも10.13%のパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-02-15T06:36:04Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
本稿では,学習損失による時間依存性を選択的に表現し,計算の並列性を改善するための効率的な動的グラフ lEarning (EDGE) を提案する。
EDGEは、数百万のノードと数億の時間的イベントを持つ動的グラフにスケールでき、新しい最先端(SOTA)パフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2021-12-14T22:24:53Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
静的および動的グラフ学習ニューラルネットワーク(GL)という新しいフレームワークを提案する。
モデルはそれぞれ、データから静的グラフ行列と動的グラフ行列を取得し、長期パターンと短期パターンをモデル化する。
ほぼすべてのデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-12-06T08:19:15Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。