論文の概要: Sensing for Space Safety and Sustainability: A Deep Learning Approach with Vision Transformers
- arxiv url: http://arxiv.org/abs/2412.08913v1
- Date: Thu, 12 Dec 2024 03:51:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:31:21.982195
- Title: Sensing for Space Safety and Sustainability: A Deep Learning Approach with Vision Transformers
- Title(参考訳): 宇宙安全と持続可能性のためのセンシング:視覚変換器を用いた深層学習アプローチ
- Authors: Wenxuan Zhang, Peng Hu,
- Abstract要約: 本稿では,衛星物体検出(SOD)タスクと搭載型ディープラーニング(DL)タスクについて論じる。
GELAN-ViTとGELAN-RepViTと呼ばれる2つの新しいDLモデルが提案されている。
これらのモデルは平均平均精度(mAP)と計算コストにおいて最先端のYOLOv9-tを上回っている。
- 参考スコア(独自算出の注目度): 29.817805350971366
- License:
- Abstract: The rapid increase of space assets represented by small satellites in low Earth orbit can enable ubiquitous digital services for everyone. However, due to the dynamic space environment, numerous space objects, complex atmospheric conditions, and unexpected events can easily introduce adverse conditions affecting space safety, operations, and sustainability of the outer space environment. This challenge calls for responsive, effective satellite object detection (SOD) solutions that allow a small satellite to assess and respond to collision risks, with the consideration of constrained resources on a small satellite platform. This paper discusses the SOD tasks and onboard deep learning (DL) approach to the tasks. Two new DL models are proposed, called GELAN-ViT and GELAN-RepViT, which incorporate vision transformer (ViT) into the Generalized Efficient Layer Aggregation Network (GELAN) architecture and address limitations by separating the convolutional neural network and ViT paths. These models outperform the state-of-the-art YOLOv9-t in terms of mean average precision (mAP) and computational costs. On the SOD dataset, our proposed models can achieve around 95% mAP50 with giga-floating point operations (GFLOPs) reduced by over 5.0. On the VOC 2012 dataset, they can achieve $\geq$ 60.7% mAP50 with GFLOPs reduced by over 5.2.
- Abstract(参考訳): 地球の低軌道上の小さな衛星によって代表される宇宙資産の急速な増加は、すべての人々にとってユビキタスなデジタルサービスを可能にする。
しかし、動的宇宙環境のため、多くの宇宙物体、複雑な大気条件、予期せぬ出来事は、宇宙の安全、運用、そして宇宙環境の持続可能性に影響を及ぼす悪条件を容易に導入することができる。
この課題は、小さな衛星が小さな衛星プラットフォーム上の制約された資源を考慮して、衝突のリスクを評価し、応答できるようにする、応答性があり効果的な衛星オブジェクト検出(SOD)ソリューションを必要とする。
本稿では,SODタスクと車載深層学習(DL)アプローチについて論じる。
GELAN-ViTとGELAN-RepViTと呼ばれる2つの新しいDLモデルが提案され、ビジョントランスフォーマー(ViT)をGELAN(Generalized Efficient Layer Aggregation Network)アーキテクチャに組み込むとともに、畳み込みニューラルネットワークとViTパスを分離することで制限に対処する。
これらのモデルは平均平均精度(mAP)と計算コストにおいて最先端のYOLOv9-tを上回っている。
SODデータセットでは,ギガ浮動小数点演算(GFLOP)を5.0以上削減した約95%のmAP50が得られる。
VOC 2012データセットでは、GFLOPを5.2以上削減した$\geq$ 60.7% mAP50を達成することができる。
関連論文リスト
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
低地球軌道(LEO)衛星は、海上無線通信で広範囲にわたるデータ通信を支援するために使用できる。
LEO衛星を広範囲にカバーし、チャネルの開放性と組み合わせることで、通信プロセスはセキュリティ上のリスクに悩まされる可能性がある。
本稿では無人航空機による低高度衛星通信システムLEOについて述べる。
論文 参考訳(メタデータ) (2025-01-26T10:13:51Z) - SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework [19.59862482196897]
資源効率の高い衛星支援ヘテロジニアスFLフレームワークであるSatFedを提案する。
SatFedは、高度に制約された衛星地上帯域の利用を最適化するために、鮮度に基づくモデルの優先順位付けキューを実装している。
実世界のLEO衛星ネットワークを用いた実験により、SatFedは最先端のベンチマークよりも優れた性能と堅牢性を発揮することが示された。
論文 参考訳(メタデータ) (2024-09-20T13:44:00Z) - Hierarchical Learning and Computing over Space-Ground Integrated Networks [40.19542938629252]
地上IoTデバイス上で,局所的に訓練されたモデルに対してグローバルアグリゲーションサービスを提供するための階層的学習・計算フレームワークを提案する。
モデルアグリゲーションのネットワークエネルギー問題を定式化し、これはDST問題であることが判明した。
代用有向グラフ上で最小スパンニングアーボラッセンスを求めることでDST問題を解決するためのトポロジカル・アウェア・エネルギ効率・ルーティング(TAEER)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-26T09:05:43Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
多数の低軌道軌道(LEO)衛星が打ち上げられ、SpaceXなどの商業企業によって宇宙に投入された。
LEO衛星が搭載するマルチモーダルセンサにより、通信だけでなく、空間変調認識やリモートセンシング画像分類など、さまざまな機械学習アプリケーションにも機能する。
本稿では,これらの課題に対処するための一般FLフレームワークとしてFedSNを提案し,LEO衛星上でのデータ多様性について検討する。
論文 参考訳(メタデータ) (2023-11-02T14:47:06Z) - Secure and Efficient Federated Learning in LEO Constellations using
Decentralized Key Generation and On-Orbit Model Aggregation [1.4952056744888915]
本稿では、LEO星座向けに設計されたセキュアFLアプローチであるFedSecureを提案する。
FedSecureは、各衛星のデータのプライバシーを、盗聴者、好奇心の強いサーバー、または好奇心の強い衛星に対して保護する。
また、収束の遅れは数日から数時間に劇的に減少するが、85.35%の精度に達する。
論文 参考訳(メタデータ) (2023-09-04T21:36:46Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - Integrating LEO Satellites and Multi-UAV Reinforcement Learning for
Hybrid FSO/RF Non-Terrestrial Networks [55.776497048509185]
低高度地球軌道衛星(SAT)と無人航空機(UAV)のメガコンステレーションは、第5世代(5G)を超える高速・長距離通信の実現を約束している。
我々は、ミリ波(mmWave)無線周波数(RF)または自由空間光(FSO)リンクを用いて、SATとUAVリレーを介して2つの長距離地上端末間のパケット転送の問題を検討する。
論文 参考訳(メタデータ) (2020-10-20T09:07:10Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。