論文の概要: Doc2Oracle: Investigating the Impact of Javadoc Comments on Test Oracle Generation
- arxiv url: http://arxiv.org/abs/2412.09360v1
- Date: Thu, 12 Dec 2024 15:27:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:33:43.887704
- Title: Doc2Oracle: Investigating the Impact of Javadoc Comments on Test Oracle Generation
- Title(参考訳): Doc2Oracle: JavadocコメントがOracle生成のテストに与える影響を調査
- Authors: Soneya Binta Hossain, Raygan Taylor, Matthew Dwyer,
- Abstract要約: Javaでは、Javadocコメントは、ソースコードに直接埋め込まれた構造化された自然言語ドキュメントを提供する。
テストオラクル生成(TOG)に対するJavadocコメントの影響について詳しく調べる。
- 参考スコア(独自算出の注目度): 0.716879432974126
- License:
- Abstract: Code documentation is a critical aspect of software development, serving as a bridge between human understanding and machine-readable code. Beyond assisting developers in understanding and maintaining code, documentation also plays a critical role in automating various software engineering tasks, such as test oracle generation (TOG). In Java, Javadoc comments provide structured, natural language documentation embedded directly in the source code, typically detailing functionality, usage, parameters, return values, and exceptions. While prior research has utilized Javadoc comments in test oracle generation (TOG), there has not been a thorough investigation into their impact when combined with other contextual information, nor into identifying the most relevant components for generating correct and strong test oracles, or understanding their role in detecting real bugs. In this study, we dive deep into investigating the impact of Javadoc comments on TOG.
- Abstract(参考訳): コードドキュメンテーションは、人間の理解と機械可読コードの橋渡しとして機能する、ソフトウェア開発における重要な側面である。
開発者によるコード理解とメンテナンスの支援に加えて、ドキュメントはテストオラクル生成(TOG)など、さまざまなソフトウェアエンジニアリングタスクを自動化する上でも重要な役割を果たす。
Javaでは、Javadocコメントが構造化された自然言語ドキュメントをソースコードに直接埋め込んでおり、機能、使用法、パラメータ、戻り値、例外を詳細に説明している。
以前の調査では、Javadocのコメントをテストオラクル生成(TOG)で利用していたが、他のコンテキスト情報と組み合わせた場合の影響や、正しい強力なテストオラクルを生成するための最も関連性の高いコンポーネントの特定、実際のバグの検出における彼らの役割の理解など、徹底的な調査は行われていない。
本研究では,TOGに対するJavadocコメントの影響について詳しく検討する。
関連論文リスト
- CLOVER: A Test Case Generation Benchmark with Coverage, Long-Context, and Verification [71.34070740261072]
本稿では,テストケースの生成と完成におけるモデルの能力を評価するためのベンチマークCLOVERを提案する。
ベンチマークはタスク間でのコード実行のためにコンテナ化されています。
論文 参考訳(メタデータ) (2025-02-12T21:42:56Z) - Commit0: Library Generation from Scratch [77.38414688148006]
Commit0は、AIエージェントにスクラッチからライブラリを書くよう促すベンチマークである。
エージェントには、ライブラリのAPIを概説する仕様文書と、インタラクティブなユニットテストスイートが提供されている。
Commit0はまた、モデルが生成したコードに対して静的解析と実行フィードバックを受け取る、インタラクティブな環境も提供する。
論文 参考訳(メタデータ) (2024-12-02T18:11:30Z) - ASSERTIFY: Utilizing Large Language Models to Generate Assertions for Production Code [0.7973214627863593]
プロダクションアサーションは、開発者がコードに関する仮定を検証するのを助けるために、コードに埋め込まれたステートメントである。
静的解析やディープラーニングのような現在のアサーション生成技術は、プロダクションアサーションの生成に関して不足している。
このプレプリントは、LLM(Large Language Models)を活用した自動エンドツーエンドツールであるAssertifyを導入し、エンジニアリングにプロダクションアサーションを生成することで、ギャップに対処する。
論文 参考訳(メタデータ) (2024-11-25T20:52:28Z) - Generating executable oracles to check conformance of client code to requirements of JDK Javadocs using LLMs [21.06722050714324]
本稿では,広く使用されているJavaライブラリ,例えば java.lang や java.util パッケージのクライアントに対するテストオーラクルの自動化に焦点を当てる。
大規模な言語モデルを、テストオラクル自動化のフレームワークに関する洞察を具現化するための技術として使用しています。
論文 参考訳(メタデータ) (2024-11-04T04:24:25Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
検索拡張生成を用いたコード生成の系統的,大規模な解析を行う。
まず、コード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。
CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
論文 参考訳(メタデータ) (2024-06-20T16:59:52Z) - On The Importance of Reasoning for Context Retrieval in Repository-Level Code Editing [82.96523584351314]
我々は、コンテキスト検索のタスクをリポジトリレベルのコード編集パイプラインの他のコンポーネントと分離する。
我々は、推論が収集された文脈の精度を向上させるのに役立っているが、それでもその十分性を識別する能力は欠如していると結論づける。
論文 参考訳(メタデータ) (2024-06-06T19:44:17Z) - Prompting Code Interpreter to Write Better Unit Tests on Quixbugs
Functions [0.05657375260432172]
単体テストは、ソフトウェア工学において、記述されたコードの正確性と堅牢性をテストするために一般的に使用されるアプローチである。
本研究では,コードインタプリタが生成する単体テストの品質に及ぼす異なるプロンプトの影響について検討する。
生成した単体テストの品質は、提供されたプロンプトのマイナーな詳細の変更に敏感ではないことがわかった。
論文 参考訳(メタデータ) (2023-09-30T20:36:23Z) - LongCoder: A Long-Range Pre-trained Language Model for Code Completion [56.813974784131624]
LongCoderは自己アテンションにスライディングウィンドウ機構を採用し、グローバルアクセス可能なトークンを2種類導入している。
ブリッジトークンは入力シーケンス全体を通して挿入され、ローカル情報を集約し、グローバルな相互作用を促進する。
メモリトークンは、後で呼び出され、記憶する必要がある重要なステートメントをハイライトするために含まれます。
論文 参考訳(メタデータ) (2023-06-26T17:59:24Z) - DocChecker: Bootstrapping Code Large Language Model for Detecting and
Resolving Code-Comment Inconsistencies [13.804337643709717]
DocCheckerは、コードとそれに伴うコメントの違いを検出し、修正するツールである。
コードとコメントの不一致を識別する能力があり、合成されたコメントを生成することもできる。
Inconsistency Code-Comment Detectionタスクでは72.3%の精度で、最先端の新たな結果が得られる。
論文 参考訳(メタデータ) (2023-06-10T05:29:09Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
我々は,タスク実行前に利用可能であり,また自然発生しているバグレポートの議論を,開発者による追加情報の必要性を回避して利用することを提案する。
このような議論から派生したさまざまな自然言語コンテキストがバグ修正に役立ち、オラクルのバグ修正コミットに対応するコミットメッセージの使用よりもパフォーマンスの向上につながることを実証する。
論文 参考訳(メタデータ) (2022-11-11T16:37:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。