論文の概要: Opinion de-polarization of social networks with GNNs
- arxiv url: http://arxiv.org/abs/2412.09404v1
- Date: Thu, 12 Dec 2024 16:09:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:30:55.833343
- Title: Opinion de-polarization of social networks with GNNs
- Title(参考訳): GNNによるソーシャルネットワークの非分極化
- Authors: Konstantinos Mylonas, Thrasyvoulos Spyropoulos,
- Abstract要約: そこで本研究では,適切なKユーザを識別する効率的なアルゴリズムを提案し,トピックに関する適度なスタンスを採用すると,偏極が最小となるようにした。
我々のアルゴリズムはグラフニューラルネットワークを採用しており、他の手法よりも大きなグラフを効果的に処理することができる。
- 参考スコア(独自算出の注目度): 9.49192088119451
- License:
- Abstract: Nowadays, social media is the ground for political debate and exchange of opinions. There is a significant amount of research that suggests that social media are highly polarized. A phenomenon that is commonly observed is the echo chamber structure, where users are organized in polarized communities and form connections only with similar-minded individuals, limiting themselves to consume specific content. In this paper we explore a way to decrease the polarization of networks with two echo chambers. Particularly, we observe that if some users adopt a moderate opinion about a topic, the polarization of the network decreases. Based on this observation, we propose an efficient algorithm to identify a good set of K users, such that if they adopt a moderate stance around a topic, the polarization is minimized. Our algorithm employs a Graph Neural Network and thus it can handle large graphs more effectively than other approaches
- Abstract(参考訳): 現在、ソーシャルメディアは政治討論や意見交換の場となっている。
ソーシャルメディアが高度に偏極化されていることを示す膨大な研究がある。
一般的に見られる現象はエコーチャンバー構造であり、ユーザーは偏極化されたコミュニティに組織され、類似の考えを持つ個人とのみつながり、特定のコンテンツを消費することに制限される。
本稿では,2つのエコーチャンバーを用いたネットワークの分極低減手法について検討する。
特に、あるトピックについて適度な意見をとるユーザによっては、ネットワークの分極が減少するのが観察される。
そこで本研究では,あるトピックに適度なスタンスを取り入れた場合,偏極が最小化されるような,優れたKユーザ群を同定する効率的なアルゴリズムを提案する。
我々のアルゴリズムはグラフニューラルネットワークを用いており、他の手法よりも大きなグラフを効果的に処理することができる。
関連論文リスト
- Dynamics of Ideological Biases of Social Media Users [0.0]
オンラインプラットフォーム全体の世論グループの進化は,世論を抱きたいという欲求に支えられていることを示す。
われわれはTwitterとParlerという2つのソーシャルメディアに焦点を当て、ユーザーの政治的偏見を追跡した。
論文 参考訳(メタデータ) (2023-09-27T19:39:07Z) - Adversaries with Limited Information in the Friedkin--Johnsen Model [25.89905526128351]
近年,社会に不協和性を導入しようとする敵の標的はオンラインソーシャルネットワークである。
ネットワーク内の不一致や偏光に強い影響を与える少数のユーザ群を検出するための近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-17T10:32:02Z) - Evidence of Demographic rather than Ideological Segregation in News
Discussion on Reddit [9.875731068651561]
典型的意見形成の文脈において,イデオロギーグループと人口動態グループの間でのホモフィリとヘテロフィリを評価した。
Redditのr/newsコミュニティでは,5年間にわたってユーザインタラクションを分析しています。
論文 参考訳(メタデータ) (2023-02-15T11:37:12Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Non-Polar Opposites: Analyzing the Relationship Between Echo Chambers
and Hostile Intergroup Interactions on Reddit [66.09950457847242]
Redditユーザーの5.97万人の活動と、13年間に投稿された421万人のコメントについて調査した。
我々は、ユーザーが互いに有害であるかどうかに基づいて、政治コミュニティ間の関係のタイプロジを作成する。
論文 参考訳(メタデータ) (2022-11-25T22:17:07Z) - Network polarization, filter bubbles, and echo chambers: An annotated
review of measures and reduction methods [0.0]
偏極は、下層のネットワークが、グループ間の接続が弱い高度に連結されたグループによって特徴づけられるときに生じる。
本研究は、ネットワーク偏光対策と偏光処理に使用されるモデルについて注釈付きレビューを行う。
論文 参考訳(メタデータ) (2022-07-27T21:23:27Z) - Perspective-taking to Reduce Affective Polarization on Social Media [11.379010432760241]
ブラウザエクステンションを通じてランダムなフィールド実験をTwitter上で1,611人の参加者に展開する。
参加者を「アウトグループ」フィードに露出するだけでエンゲージメントが向上するが、他の人々が政治的見解を持っている理由の理解は得られない。
参加者に不一致を思い出させるよう促すことによって、親しみやすく共感的な言葉で経験をフレーミングすることは、エンゲージメントに影響を与えず、反対の見解を理解する能力を高める。
論文 参考訳(メタデータ) (2021-10-11T20:25:10Z) - Reaching the bubble may not be enough: news media role in online
political polarization [58.720142291102135]
分極を減らす方法は、異なる政治的指向を持つ個人に党間のニュースを分配することである。
本研究は、ブラジルとカナダにおける全国選挙の文脈において、これが成立するかどうかを考察する。
論文 参考訳(メタデータ) (2021-09-18T11:34:04Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Political audience diversity and news reliability in algorithmic ranking [54.23273310155137]
本稿では,ウェブサイトのオーディエンスの政治的多様性を質の指標として活用することを提案する。
ドメインの専門家によるニュースソースの信頼性評価と6,890人の米国市民の多様なサンプルによるWebブラウジングデータを用いて、より極端な、政治的に多様性の低いWebサイトが、ジャーナリストの基準を低くしていることを示す。
論文 参考訳(メタデータ) (2020-07-16T02:13:55Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。