論文の概要: A Large Sensor Foundation Model Pretrained on Continuous Glucose Monitor Data for Diabetes Management
- arxiv url: http://arxiv.org/abs/2412.09727v3
- Date: Fri, 01 Aug 2025 14:45:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 14:06:53.303038
- Title: A Large Sensor Foundation Model Pretrained on Continuous Glucose Monitor Data for Diabetes Management
- Title(参考訳): 糖尿病管理のためのグルコース連続測定データに基づく大規模センサ基礎モデル
- Authors: Junjie Luo, Abhimanyu Kumbara, Mansur Shomali, Rui Han, Anand Iyer, Ritu Agarwal, Gordon Gao,
- Abstract要約: CGM-LSMはトランスフォーマーデコーダをベースとしたLarge Sensor Model (LSM) で, 糖尿病, 年齢, 性別の異なる患者から160万のCGMレコードを事前訓練した。
CGMデータに埋め込まれた潜伏知識を学習するために, 患者をグルコース時間ステップのシーケンスとしてモデル化し, 2時間水平線での血糖値の予測に応用する。
従来の方法と比較して、CGM-LSMは予測精度とロバスト性を大幅に改善し、1時間水平線予測におけるルート平均2乗誤差を48.51%削減し、保持された患者群間で一貫したゼロショット予測性能を向上した。
- 参考スコア(独自算出の注目度): 3.8195320624847833
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Continuous glucose monitoring (CGM) combined with AI offers new opportunities for proactive diabetes management through real-time glucose forecasting. However, most existing models are task-specific and lack generalization across patient populations. Inspired by the autoregressive paradigm of large language models, we introduce CGM-LSM, a Transformer decoder-based Large Sensor Model (LSM) pretrained on 1.6 million CGM records from patients with different diabetes types, ages, and genders. We model patients as sequences of glucose time steps to learn latent knowledge embedded in CGM data and apply it to the prediction of glucose readings for a 2-hour horizon. Compared with prior methods, CGM-LSM significantly improves prediction accuracy and robustness: a 48.51% reduction in root mean square error in one-hour horizon forecasting and consistent zero-shot prediction performance across held-out patient groups. We analyze model performance variations across patient subgroups and prediction scenarios and outline key opportunities and challenges for advancing CGM foundation models.
- Abstract(参考訳): 継続的グルコースモニタリング(CGM)とAIを組み合わせることで、リアルタイムのグルコース予測を通じて、プロアクティブな糖尿病管理の新たな機会を提供する。
しかしながら、既存のモデルのほとんどはタスク固有であり、患者集団全体にわたる一般化が欠如している。
CGM-LSMはトランスフォーマーデコーダをベースとしたLarge Sensor Model (LSM) で, 糖尿病, 年齢, 性別の異なる患者から160万のCGMレコードを事前トレーニングした。
CGMデータに埋め込まれた潜伏知識を学習するために, 患者をグルコース時間ステップのシーケンスとしてモデル化し, 2時間水平線での血糖値の予測に応用する。
従来の方法と比較して、CGM-LSMは予測精度とロバスト性を大幅に改善し、1時間水平線予測におけるルート平均2乗誤差を48.51%削減し、保持された患者群間で一貫したゼロショット予測性能を向上した。
我々は,患者サブグループ間のモデル性能変動と予測シナリオを分析し,CGMファンデーションモデルの発展に向けた重要な機会と課題を概説する。
関連論文リスト
- Type 1 Diabetes Management using GLIMMER: Glucose Level Indicator Model with Modified Error Rate [6.300322064585917]
我々は,血糖値を予測する機械学習手法であるGLIMMERを開発した。
GLIMMERは、グルコース値を正常および異常な範囲に分類し、ジグリセミック事象の精度を優先する新しいカスタム損失関数を考案する。
論文 参考訳(メタデータ) (2025-02-20T01:26:00Z) - AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset [8.063401183752347]
糖尿病は、持続的な高血糖値(BGL)を特徴とする慢性代謝異常である
近年のディープラーニングモデルでは,BGL予測の改善が期待できる。
本研究では,長期血糖予測のためのマルチモーダルトランスフォーマーベースのフレームワークであるAttenGlucoを提案する。
論文 参考訳(メタデータ) (2025-02-14T05:07:38Z) - Chronic Disease Diagnoses Using Behavioral Data [42.96592744768303]
高血糖(糖尿病)、高脂血症、高血圧(総称3H)を独自の行動データを用いて診断することを目的としている。
論文 参考訳(メタデータ) (2024-10-04T12:52:49Z) - FedGlu: A personalized federated learning-based glucose forecasting algorithm for improved performance in glycemic excursion regions [4.073768455373616]
連続グルコースモニタリング(Continuous glucose monitoring, CGM)デバイスは、血糖値のリアルタイムモニタリングと、血糖値の変動に対するタイムリーな警告を提供する。
低血糖や高血糖のような希少な出来事は、その頻度が低いために依然として困難である。
本稿では,血糖除去領域の性能を著しく向上させる新しいHH損失関数を提案する。
論文 参考訳(メタデータ) (2024-08-25T19:51:27Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Automatic Prediction of Amyotrophic Lateral Sclerosis Progression using Longitudinal Speech Transformer [56.17737749551133]
ニューラルネットワークを用いたALS病進行自動予測器であるALS長手音声変換器(ALST)を提案する。
録音における高品質な事前訓練音声特徴と長手情報を活用することで、最良のモデルが91.0%のAUCを達成できる。
ALSTはALS進行の細粒度で解釈可能な予測が可能で、特に稀な症例と重篤な症例の区別が可能である。
論文 参考訳(メタデータ) (2024-06-26T13:28:24Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Toward Short-Term Glucose Prediction Solely Based on CGM Time Series [4.7066018521459725]
TimeGluは、CGM時系列データに基づく短期的なグルコース予測のためのエンドツーエンドパイプラインである。
患者の個人データを追加することなく、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-04-18T06:02:12Z) - Patterns Detection in Glucose Time Series by Domain Transformations and
Deep Learning [0.0]
本研究は,血糖値の今後の変動を予測することを目的としており,血糖値の低下が予想される可能性がある。
提案手法は, 有望な結果を得た4種類の糖尿病患者の実データを用いて検討した。
論文 参考訳(メタデータ) (2023-03-30T09:08:31Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - Task-wise Split Gradient Boosting Trees for Multi-center Diabetes
Prediction [37.846368153741395]
マルチセンター糖尿病予測タスクにTSGB(Task-wise Split Gradient Boosting Trees)を提案する。
TSGBはいくつかの最先端手法に対して優れた性能を発揮する。
TSGB法は早期診断のためのオンライン糖尿病リスク評価ソフトウェアとして展開されている。
論文 参考訳(メタデータ) (2021-08-16T14:22:44Z) - Stacked LSTM Based Deep Recurrent Neural Network with Kalman Smoothing
for Blood Glucose Prediction [4.040272012640556]
本研究では,長期長期記憶(LSTM)に基づく深部再発ニューラルネットワーク(RNN)モデルを用いた血糖値予測手法を提案する。
6人の異なる患者の8週間のデータを含むOttoT1DMデータセットでは、平均RMSEは6.45と17.24mg/dlを30分60分予測水平線(PH)で達成している。
以上の結果から,t1d糖尿病管理のための人工膵およびインスリン注入システムの性能向上を期待できる,より信頼性の高いbg予測が可能と考えられた。
論文 参考訳(メタデータ) (2021-01-18T02:31:38Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。