論文の概要: A Non-Convex Optimization Strategy for Computing Convex-Roof Entanglement
- arxiv url: http://arxiv.org/abs/2412.10166v1
- Date: Fri, 13 Dec 2024 14:29:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:02:22.550561
- Title: A Non-Convex Optimization Strategy for Computing Convex-Roof Entanglement
- Title(参考訳): コンベックスルー絡み計算のための非凸最適化手法
- Authors: Jimmie Adriazola, Katarzyna Roszak,
- Abstract要約: 混合状態に対する絡み合いの数値計算法を開発した。
この手法は曲線を確実に再現するのに十分であることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We develop a numerical methodology for the computation of entanglement measures for mixed quantum states. Using the well-known Schr\"odinger-HJW theorem, the computation of convex roof entanglement measures is reframed as a search for unitary matrices; a nonconvex optimization problem. To address this non-convexity, we modify a genetic algorithm, known in the literature as differential evolution, constraining the search space to unitary matrices by using a QR factorization. We then refine results using a quasi-Newton method. We benchmark our method on simple test problems and, as an application, compute entanglement between a system and its environment over time for pure dephasing evolutions. We also study the temperature dependence of Gibbs state entanglement for a class of block-diagonal Hamiltonians to provide a complementary test scenario with a set of entangled states that are qualitatively different. We find that the method works well enough to reliably reproduce entanglement curves, even for comparatively large systems. To our knowledge, the modified genetic algorithm represents the first derivative-free and non-convex computational method that broadly applies to the computation of convex roof entanglement measures.
- Abstract(参考訳): 混合量子状態に対する絡み合いの数値計算法を開発した。
有名なSchr\"odinger-HJW定理を用いて、凸屋根の絡み合いの計算はユニタリ行列の探索として再構成される。
この非凸性に対処するために、QR因子化を用いて探索空間をユニタリ行列に制約する、差分進化(differential evolution)として文献で知られている遺伝的アルゴリズムを修正した。
次に準ニュートン法を用いて結果を精査する。
簡単なテスト問題に対して,本手法をベンチマークし,本手法の適用例として,システムと環境間の絡み合いを時間とともに計算し,純粋に強調する進化を推し進める。
また,ブロック対角型ハミルトニアンのクラスに対するギブス状態の絡み合いの温度依存性について検討し,定性的に異なる絡み合い状態のセットで相補的なテストシナリオを提供する。
本手法は,比較的大規模なシステムであっても,絡み合い曲線を確実に再現するのに十分であることがわかった。
我々の知る限り、修正された遺伝的アルゴリズムは、凸屋根の絡み合いの計算に広く応用される最初の微分自由で非凸式計算法である。
関連論文リスト
- Demonstration of Scalability and Accuracy of Variational Quantum Linear Solver for Computational Fluid Dynamics [0.0]
本稿では,このような大規模方程式系を高精度に解くことを目的とした量子方法論の探索について述べる。
2次元,過渡的,非圧縮的,粘性,非線形結合バーガース方程式をテスト問題とする。
我々の研究結果は、我々の量子法が従来の手法に匹敵する精度で結果をもたらすことを示した。
論文 参考訳(メタデータ) (2024-09-05T04:42:24Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Neural incomplete factorization: learning preconditioners for the conjugate gradient method [2.899792823251184]
我々は、効率的なプレコンディショナーの生成を加速するためのデータ駆動型アプローチを開発する。
一般的に手動のプリコンディショナーをグラフニューラルネットワークの出力に置き換える。
本手法は, 行列の不完全分解を発生させ, 神経不完全分解(NeuralIF)と呼ばれる。
論文 参考訳(メタデータ) (2023-05-25T11:45:46Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
制約付き非線形最適化問題のオンライン統計的推測を考察する。
これらの問題を解決するために、逐次二次計画法(StoSQP)を適用する。
論文 参考訳(メタデータ) (2022-05-27T00:34:03Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
現在のアルゴリズムはブロック座標降下法や近点アルゴリズムを用いて設計されている。
本稿では,2次元投影法に基づく新しいアルゴリズムを提案し,慎重に設計された探索方向と変数分割方式を取り入れた。
合成および実世界のデータセットに対する実験結果から,提案アルゴリズムは最先端の手法と比較して計算効率を著しく向上させることを示した。
論文 参考訳(メタデータ) (2021-12-03T14:39:10Z) - Converting ADMM to a Proximal Gradient for Convex Optimization Problems [4.56877715768796]
融解ラッソや凸クラスタリングなどのスパース推定では、問題を解くために、近位勾配法またはマルチプライヤー(ADMM)の交互方向法のいずれかを適用します。
本論文では,制約と目的が強く凸であると仮定し,ADMM溶液を近位勾配法に変換する一般的な方法を提案する。
数値実験により, 効率の面で有意な改善が得られることを示した。
論文 参考訳(メタデータ) (2021-04-22T07:41:12Z) - Local optimization on pure Gaussian state manifolds [63.76263875368856]
ボソニックおよびフェルミオンガウス状態の幾何学に関する洞察を利用して、効率的な局所最適化アルゴリズムを開発する。
この手法は局所幾何学に適応した降下勾配の概念に基づいている。
提案手法を用いて、任意の混合ガウス状態の精製の絡み合いを計算するのにガウス浄化が十分であるという予想の数値的および解析的証拠を収集する。
論文 参考訳(メタデータ) (2020-09-24T18:00:36Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。