論文の概要: Explicit near-optimal quantum algorithm for solving the advection-diffusion equation
- arxiv url: http://arxiv.org/abs/2501.11146v1
- Date: Sun, 19 Jan 2025 19:03:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:20:38.734499
- Title: Explicit near-optimal quantum algorithm for solving the advection-diffusion equation
- Title(参考訳): 対流拡散方程式を解くための明示的近似量子アルゴリズム
- Authors: Ivan Novikau, Ilon Joseph,
- Abstract要約: 散逸初期値問題をモデル化するための明示的な量子アルゴリズムを提案する。
本稿では,和指数への依存度を三角関数に変換する単純な座標変換に基づく量子回路を提案する。
提案アルゴリズムは,非単項初期値問題の幅広いクラスをモデル化するために利用できる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: An explicit near-optimal quantum algorithm is proposed for modeling dissipative initial-value problems. This method, based on the Linear Combination of Hamiltonian Simulations (LCHS), approximates a target nonunitary operator as a weighted sum of Hamiltonian evolutions, thereby emulating a dissipative problem by mixing various time scales. We propose an efficient encoding of this algorithm into a quantum circuit based on a simple coordinate transformation that turns the dependence on the summation index into a trigonometric function and significantly simplifies block-encoding. The resulting circuit has high success probability and scales logarithmically with the number of terms in the LCHS sum and linearly with time. We verify the quantum circuit and its scaling by simulating it on a digital emulator of fault-tolerant quantum computers and, as a test problem, solve the advection-diffusion equation. The proposed algorithm can be used for modeling a wide class of nonunitary initial-value problems including the Liouville equation and linear embeddings of nonlinear systems.
- Abstract(参考訳): 散逸初期値問題をモデル化するために, 明示的な近似量子アルゴリズムを提案する。
この方法は、ハミルトンシミュレーションの線形結合(LCHS)に基づいて、ハミルトン進化の重み付け和として対象の非単位作用素を近似し、様々な時間スケールを混合して散逸問題をエミュレートする。
本稿では、このアルゴリズムを単純な座標変換に基づいて量子回路に効率よく符号化し、和指数への依存を三角関数に変換し、ブロックエンコーディングを大幅に単純化する。
結果として得られる回路は高い成功確率を持ち、LCHS和の項数と時間と線形に対数的にスケールする。
我々は,フォールトトレラント量子コンピュータのディジタルエミュレータ上でシミュレーションを行い,量子回路とそのスケーリングを検証する。
提案アルゴリズムは、リウヴィル方程式や非線形系の線形埋め込みを含む、幅広い非単項初期値問題のモデル化に利用できる。
関連論文リスト
- Demonstration of Scalability and Accuracy of Variational Quantum Linear Solver for Computational Fluid Dynamics [0.0]
本稿では,このような大規模方程式系を高精度に解くことを目的とした量子方法論の探索について述べる。
2次元,過渡的,非圧縮的,粘性,非線形結合バーガース方程式をテスト問題とする。
我々の研究結果は、我々の量子法が従来の手法に匹敵する精度で結果をもたらすことを示した。
論文 参考訳(メタデータ) (2024-09-05T04:42:24Z) - Quantum and classical algorithms for nonlinear unitary dynamics [0.5729426778193399]
我々は$fracd|urangledtという形の非線形微分方程式に対する量子アルゴリズムを提案する。
また,Euler法に基づく古典的アルゴリズムを導入し,制限された場合の量子アルゴリズムへのコンパラブルなスケーリングを実現する。
論文 参考訳(メタデータ) (2024-07-10T14:08:58Z) - Solving Systems of Linear Equations: HHL from a Tensor Networks Perspective [39.58317527488534]
本稿では,HHLアルゴリズムに基づく線形方程式系の解法を,新しい四重項法を用いて提案する。
テンソルネットワーク上で量子インスパイアされたバージョンを実行し、プロジェクションのような非単体演算を行う能力を生かした。
論文 参考訳(メタデータ) (2023-09-11T08:18:41Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
原子と分子の衝突に対するシュリンガー方程式を解くためのハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムはコーン変分原理の$S$-matrixバージョンに基づいており、基本散乱$S$-matrixを計算する。
大規模多原子分子の衝突をシミュレートするために,アルゴリズムをどのようにスケールアップするかを示す。
論文 参考訳(メタデータ) (2023-04-12T18:10:47Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Low-depth Hamiltonian Simulation by Adaptive Product Formula [3.050399782773013]
量子コンピュータ上の量子システムの力学を効率的に研究するために、様々なハミルトンシミュレーションアルゴリズムが提案されている。
本稿では,低深度時間進化回路を構築するための適応的手法を提案する。
我々の研究は、雑音の中規模量子デバイスを用いた実践的なハミルトンシミュレーションに光を当てている。
論文 参考訳(メタデータ) (2020-11-10T18:00:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。